

iOS Forensics for
Investigators

Take mobile forensics to the next level by analyzing,
extracting, and reporting sensitive evidence

Gianluca Tiepolo

BIRMINGHAM—MUMBAI

iOS Forensics for Investigators
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Vijin Boricha
Publishing Product Manager: Vijin Boricha
Senior Editor: Athikho Sapuni Rishana
Content Development Editor: Sayali Pingale
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Associate Project Manager: Neil Dmello
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Roshan Kawale
Marketing Coordinator: Sanjana Gupta

First published: April 2022
Production reference: 1110422

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-80323-408-3

www.packt.com

http://www.packt.com

 Dedicated to those who try, whether they fail or succeed.

Contributors

About the author
Gianluca Tiepolo is a cybersecurity researcher who specializes in mobile forensics and
incident response. He holds a BSc degree in computer science and an MSc in information
security, as well as several security-related certifications.

Over the past 12 years, he has performed security monitoring, threat hunting,
incident response, and intelligence analysis as a consultant for dozens of organizations,
including several Fortune 100 companies. Gianluca is also the co-founder of the
start-up Sixth Sense Solutions, which developed AI-based anti-fraud solutions. Today,
Gianluca works as a Security Delivery Team Lead for consulting firm Accenture Security.

In 2016, he authored the book Getting Started with RethinkDB, published by
Packt Publishing.

Mobile forensics is a field that is exploding with potential and opportunities.
I am fortunate to work with some of the most talented analysts, examiners,

and investigators who have supported me throughout the writing of this
book and contributed much to the book's contents.

Writing a book is no easy task, and no work is truly the result of one mind.

I want to thank Vijin Boricha, who was the first person to believe in this
project and set the conditions that led to the publishing of this book. I
want to particularly thank Neil Dmello — my project coordinator —

who supported me through the many iterations and rewrites, yet always
remained encouraging. Thank you to my editors — Sayali Pingale and

Athikho Sapuni Rishana — for their feedback and guidance. Thanks also to
my technical reviewer, Domenica Lee Crognale. This book is so much better

thanks to her tremendously insightful suggestions.

To the entire Packt Publishing team who pulled this all together, my sincere
thanks to you all.

This book has been an amazing journey into the world of iOS forensics, the
outcome of which would never have been possible without the contributions

of the entire community. I would like to thank all the people who work in
the DFIR industry who are driven by their passion and dedication.

About the reviewer
Domenica Lee Crognale has worked in digital forensics for more than 16 years, with
13 years specifically dedicated to mobile devices. She has performed mobile forensic
investigations for both law enforcement and the intelligence community in support of
the US federal government. She received a BSc in business administration from Old
Dominion University, and her master's in cybersecurity management from Purdue
Global University. She is currently employed by the SANS Institute full time, where she
co-authors and instructs a six-day course, FOR585, focusing on smartphone forensic
analysis. She also serves as a faculty advisor for candidates enrolled in the SANS
Technology Institute's masters in cybersecurity degree program.

I'd like to thank my family and friends who understand the time and
commitment it takes to research and test data that is constantly changing.
Working in this field would not be possible without the supportive mobile
forensics community that has developed over the last several years. Thank
you to all of the trailblazers who make this field an exciting place to work

each and every day. We are grateful for everything you do!

Table of Contents
Preface

Section 1 – Data Acquisition from
iOS Devices

1
Introducing iOS Forensics

Understanding mobile forensics 4
The new golden age for iOS forensics 5
Challenges in iOS forensics 6

Dissecting the iOS
operating system 7
Understanding the iOS filesystem 8

Understanding iOS security 11
User authentication 11

Encryption and Data Protection 12

Establishing a workflow 17
Seizure and identification 17
Preservation 19
Acquisition 20
Analysis 22
Validation 23
Reporting 25

Summary 26

2
Data Acquisition from iOS Devices

Understanding acquisition
methods 28
Logical acquisitions 28
Physical acquisitions 32
Filesystem acquisitions 32

Jailbreaking the device 37
Jailbreaking with checkra1n 37

Triaging the device 40
Deciding the best acquisition method 42

Performing a logical acquisition 43
Logical acquisition with Cellebrite UFED 44
Logical acquisition with Elcomsoft iOS
Forensic Toolkit 48

viii Table of Contents

Performing a
filesystem acquisition 51
Checkm8 full filesystem acquisition
using Cellebrite UFED 51

Agent-based full filesystem acquisition 55

Summary 58

Section 2 – iOS Data Analysis

3
Using Forensic Tools

Understanding forensic tools 62
Tool validation 62

Working with Cellebrite
Physical Analyzer 63
Loading evidence and
selective decoding 64
Viewing decoded data 68
Using the AppGenie 69

Working with Magnet AXIOM 73
Loading evidence and on-the-fly

processing 73
Analyzing evidence
with AXIOM Examine 80

Using open source tools 83
Apollo 83
iLEAPP 83
iOS Triage 83
Sysdiagnose 84
Analyzing data with iLEAPP 84

Summary 86

4
Working with Common iOS Artifacts

Understanding the
importance of validation 88
Working with iOS artifacts 89
Introducing SQLite 90
Tables, columns, and rows 90
Running SQL queries 92

Pages, vacuuming, and
write-ahead logs 94
Recovering deleted data 101
Working with property lists 108
Working with protocol buffers 110

Locating common artifacts 111
Summary 114

Table of Contents ix

5
Pattern-of-Life Forensics

Introducing pattern-of-life
forensics 116
Meaningful SQLite databases 117

Working with timestamps 119
Unix timestamps 119
Mac timestamps 121

Logs, events, and user
interaction 121
The KnowledgeC database 121
Analyzing application usage 124
Analyzing user interaction 129

Introducing Apollo 130
Summary 134

6
Dissecting Location Data

Introducing location data 136
GPS fixes, cell towers,
and Wi-Fi networks 137
Satellite GPS 139
Cell towers 140
Wi-Fi and Bluetooth 141

Locating location artifacts 142
Analyzing location data 143
Understanding Significant Locations 146
Analyzing Wi-Fi locations 148

Understanding Harvested Locations 150
Analyzing harvested cell tower data 151
Analyzing harvested Wi-Fi data 152
Advanced iOS location artifacts 153

Analyzing location data using
forensic tools 154
Viewing location data with Physical
Analyzer 154
Analyzing location data with Apollo 155

Summary 157

7
Analyzing Connectivity Data

Introducing cellular forensics 160
Analyzing the PowerLog 162
Analyzing the address book 164
Analyzing the call log 165

Analyzing networking data 167
Analyzing network usage 169

Introducing Bluetooth forensics 170
Understanding Safari forensics 172
Analyzing Safari history 174
Introducing private browsing 177

Summary 178

x Table of Contents

8
Email and Messaging Forensics

Introducing email forensics 180
Extracting email metadata 181
Analyzing email content 184

Understanding
messaging forensics 185
Analyzing SMS and iMessage artifacts 186

Introducing third-party
messaging apps 189
Recovering deleted messages 190
Detecting deleted messages using Mirf 191

Summary 193

9
Photo, Video, and Audio Forensics

Introducing media forensics 196
Analyzing photos and videos 198
Understanding Photos.sqlite 199

Introducing EXIF metadata 203

Viewing EXIF metadata 205

Analyzing user viewing activity 205
Summary 208

10
Analyzing Third-Party Apps

Introducing iOS applications 210
Identifying installed applications 212
Tracking application GUIDs 214

Dynamic application analysis 217
Connecting to the test device 218
Using cda to locate an
application's containers 219
Using fsmon to monitor
filesystem events 220

Using mitmproxy to monitor
network activity 222
Advanced application analysis 224

Practical third-party
applications forensics 225
Social networking applications 225
Messaging applications 227
Productivity applications 229
Multimedia applications 231

Summary 233

Table of Contents xi

11
Locked Devices, iTunes Backups, and iCloud Forensics

Acquiring locked devices 236
Using lockdown pairing records
to access the device 237
Passcode cracking 239

BFU acquisition of
locked devices 239
Performing a BFU acquisition using
the Elcomsoft iOS Forensic Toolkit 240
Performing a BFU acquisition using
the Cellebrite UFED 242

Introducing iTunes backups 243
Locating backup files 244

Analyzing iTunes backups 245
Cracking iTunes backup passwords 246

Introducing iCloud forensics 249
iCloud backups 249
iCloud synced data 250
Accessing iCloud data 252
Introducing iCloud Keychain 253
Extracting iCloud Keychain
and synced data 255
Extracting iCloud backups 256

Summary 257

Section 3 – Reporting

12
Writing a Forensic Report and Building a Timeline

Mobile forensics reporting 262
Writing a forensic report 263

Creating reports using
Cellebrite Physical Analyzer 267
Generating a preliminary device report 267

Generating a complete report 270

Introducing timelines 276
Building a timeline
with Magnet AXIOM 277
Summary 280

Index
Other Books You May Enjoy

Preface
Over the past few years, digital forensic examiners have seen a remarkable increase in
requests to extract and analyze data from iOS and Android mobile devices. Smartphones
and the rich data associated with them have become the single most important source of
evidence in virtually every type of investigation. The examination and extraction of data
from these devices present numerous unique challenges: modern devices contain so much
data that it takes someone with training and experience to add context to the data and
understand where that data comes from, how it was generated, and what it means for the
investigation.

Finding artifacts on a mobile device is the easy part but recognizing whether those
artifacts are evidence can be much harder. Too often, mobile examiners rely on automated
tools to extract and process the data, simply allowing the software to identify it without
completely comprehending how the actual file that contains this data was created, what it
means, and what is going on behind the scenes. Forensic tools and commercial software
definitely have their place, but they're not enough. The modern investigator needs to take
an in-depth look at the artifacts and learn how to recognize which artifacts are potentially
evidence and which are just noise.

Most technical books tend to be tool-focused and often take on a cookbook approach to
mobile forensics. This book takes a completely different approach, by guiding you through
logical steps that explain what's going on behind the scenes and how to interpret the data.
By the end of this book, the examiner will be able to collect the data from an iOS device
using multiple techniques and demonstrate unequivocally where the data came from and
what it entails for the investigation.

Who this book is for
This book is intended specifically for forensic analysts or digital investigators who need to
acquire and analyze information from mobile devices running iOS. This book may also
be useful for cybersecurity experts and researchers, as it provides an in-depth look at how
iOS devices work behind the scenes.

xiv Preface

What this book covers
The way this book is organized is to start with an overview of mobile forensics and
what you should know about it. The first section goes over the forensic process and
discusses different options to acquire data from iOS devices. The second section describes
approaches and best practices to analyze the data, such as manually parsing through
the artifacts. This section also covers the most popular forensic tools that are used in an
examination. The final section of the book discusses how to build a timeline and best
practices for the creation of a forensic report.

Chapter 1, Introducing iOS Forensics, introduces the topic of mobile forensics by
describing the forensic process and the iOS operating system.

Chapter 2, Data Acquisition from iOS Devices, describes all available options to
successfully acquire the data from an iOS device. We'll discuss logical, physical, and
filesystem acquisitions, and much more, such as agent-based extractions.

Chapter 3, Using Forensic Tools, describes why forensic tools are important and how an
investigator can benefit by using them. The chapter takes an in-depth look at some of the
most popular tools, such as Cellebrite Physical Analyzer and Magnet AXIOM.

Chapter 4, Working with Common iOS Artifacts, introduces common artifacts that can
be found on iOS devices, such as SQLite databases and Property lists. We'll learn how to
identify these artifacts, where to find them, and how to analyze them.

Chapter 5, Pattern-of-Life Forensics, focuses on artifacts that can help an investigator
understand a user's day-to-day activities, such as what apps were used and for how long.

Chapter 6, Dissecting Location Data, is all about extracting, analyzing, and understanding
location-related artifacts.

Chapter 7, Analyzing Connectivity Data, discusses cellular forensics, networking data,
Bluetooth and Wi-Fi artifacts, and browsing history.

Chapter 8, Email and Messaging Forensics, describes different email clients and messaging
applications and how to analyze their data.

Chapter 9, Photo, Video, and Audio Forensics, dives deep into multimedia forensics.

Chapter 10, Analyzing Third-Party Apps, introduces third-party applications. You will
learn how to analyze any kind of application and how to quickly locate artifacts from the
most popular iOS apps.

Chapter 11, Locked Devices, iTunes Backups, and Cloud Forensics, discusses more advanced
topics, such as working with locked devices and extracting forensic data from iCloud.

Preface xv

Chapter 12, Writing a Forensic Report and Building a Timeline, puts together all the
knowledge acquired in the previous chapters by teaching you how to produce a
comprehensive timeline report.

To get the most out of this book
This book is designed to allow you to use any kind of operating system, so most of the
examples can be replicated by using Windows, macOS, or Linux; however, it should be
noted that some commercial forensic tools are only available on Windows.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803234083_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "We're providing a ZIP archive as the input file and we're exporting
the report to the output folder."

A block of code is set as follows:

SELECT ROWID, text FROM message

ORDER BY ROWID DESC

LIMIT 5;

https://static.packt-cdn.com/downloads/9781803234083_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803234083_ColorImages.pdf

xvi Preface

Any command-line input or output is written as follows:

python3 ileapp.py -t zip -i ../iphone_dump.zip -o output

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Once you've added all evidence sources to the case, click on GO TO PROCESSING
DETAILS to continue."

Tips or Important Notes
Appear like this.

Disclaimer
The information within this book is intended to be used only in an ethical manner. Do
not use any information from the book if you do not have written permission from the
owner of the equipment. If you perform illegal actions, you are likely to be arrested and
prosecuted to the full extent of the law. Neither Packt Publishing nor the author of this book
takes any responsibility if you misuse any of the information contained within the book.
The information herein must only be used while testing environments with proper written
authorization from the appropriate persons responsible.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

Preface xvii

Share Your Thoughts
Once you've read iOS Forensics for Investigators, we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1803234083

You will learn the correct iOS device workflow and understand the basics of how the iOS
operating system works. At the end of part one, you will be able to successfully extract a
full filesystem image from an iOS device.

This part of the book comprises the following chapters:

• Chapter 1, Introducing iOS Forensics

• Chapter 2, Data Acquisition from iOS Devices

Section 1 –
Data Acquisition
from iOS Devices

1
Introducing iOS

Forensics
Over the past decade, smartphones have undergone a profound revolution, impacting our
lives in all possible ways: our devices are no longer just smart phones – they have become
data hubs that store all kinds of information from our digital (and not so digital) life.

Today, from the palm of our hand, we can surf the web, buy theater tickets, get food
delivered to our door, or call an Uber. We're using our devices to read eBooks, take notes,
engage in creative tasks, and share our lives with our followers through social media. We
have progressively replaced our digital cameras with our iPhone camera roll. Smartphones
can keep track of physical activity, interact with external devices, give us directions, and
remind us of that important meeting that we might forget. We use productivity apps to get
stuff done and we make payments using Apple Pay. And – of course – we use our iPhones
to get in touch with people on the other side of the world. With the massive spread of
iPads and tablets in general, our devices are no longer just communication devices. They
have become an almost unlimited content platform where we can enjoy movies, TV series,
or simply listen to our favorite music.

To be able to provide these amazing features, mobile devices collect huge amounts of data
that is processed by iOS and sometimes synced to iCloud. This information documents
and reveals the thoughts and activity of a user substantially more than any data stored in
any desktop computer.

4 Introducing iOS Forensics

Mobile forensics is all about collecting this data, preserving it, assessing it, validating it,
and extracting meaningful insights that can be presented as evidence.

In this chapter, we will cover the following topics:

• Understanding mobile forensics

• Dissecting the iOS operating system

• Understanding iOS security

• Establishing a workflow

Understanding mobile forensics
Apple devices are popular all over the world due to the user experience they provide, their
magnificent design, and their revolutionary features, so it shouldn't come as a surprise
that in 2016, Apple announced that over one billion iPhones had been sold. Over the past
5 years, mobile device usage has grown particularly fast, with data from 2021 indicating
that there were one billion active iOS devices.

The information that's stored on a smartphone can help address crucial questions in
an investigation, revealing whom an individual has been in contact with, where they
have been, and what they've been doing with the device. As new features are added
to the device and more apps are made available through the App Store, the amount of
information that's stored on iOS devices is continuously growing.

Mobile forensics can be defined as the process of recovering digital evidence from a
mobile device under forensically sound conditions using validated means.

The kind of evidence we can recover from a device depends on the device itself and
what techniques are used for data extraction, but generally, smartphones contain
personal information such as call history, messages, emails, photos, videos, memos,
passwords, location data, and sensor data. No other computing device is as personal
as a mobile phone.

Typically, the examination process should reveal all digital evidence, including artifacts
that may have been hidden, obscured, or deleted. Evidence is gained by applying
established scientifically based methods and should describe the content and state of
the data fully, including where it is located, the potential significance, and how different
data sources relate to each other. The forensic process begins by extracting a copy of the
evidence from the mobile device. Once a copy is available, the next step involves analyzing
the data, identifying evidence, and developing the contents of a final report.

Understanding mobile forensics 5

The new golden age for iOS forensics
Over the past 3 years, the digital forensics industry has undergone a major revolution.

In 2019, the discovery of the checkm8 exploit for iOS devices was a complete game-
changer as it opened new doors for digital forensics investigators, allowing full filesystem
extractions of hundreds of millions of Apple devices. If you've never seen a full filesystem
extraction before, you'll probably be surprised by the extent and variety of data that the
device stores!

Checkm8 is based on an un-patchable hardware flaw that lives directly on the chips of iOS
devices, ranging from devices running Apple's A11 chip down to the A5 generation. This
includes devices from the iPhone 4S to iPhone X and several iPads.

This vulnerability is specifically a BootROM exploit, which means it takes advantage of a
security flaw in the initial code that iOS devices load during the boot process, and it can't
be overwritten or patched by Apple through a software update.

At the end of 2019, checkra1n was released, the first public, closed source jailbreak
based on the checkm8 exploit. Digital investigators and forensics analysts have quickly
adopted checkra1n to get access to the device's filesystem and keychain; however, as with
all jailbreaks, this solution has several drawbacks as using a jailbreak inevitably modifies
some data on the device's filesystem and is not considered forensically sound.

For these reasons, vendors such as Cellebrite, Elcomsoft, and Oxygen Forensic have
developed proprietary solutions based on the original checkm8 exploit that work by
patching the device's RAM. These tools allow investigators to perform full filesystem
extractions without touching system and user partitions and without making any changes
to the device as the exploit runs in memory.

In other words, on selected devices, the checkm8 vulnerability can be exploited to extract
the full filesystem without actually jailbreaking the device. The following table shows the
list of devices that are vulnerable to the checkm8 exploit:

Table 1.1 – Devices that are vulnerable to the checkm8 exploit

To exploit checkm8 for a filesystem extraction, your device must be compatible, and it
must be running a supported iOS version. This is a major drawback as newer devices,
such as the latest iPhone 13, are not supported. There are, however, other options.

6 Introducing iOS Forensics

In 2020, vendors such as Elcomsoft and Belkasoft introduced agent-based extraction, a
new acquisition method that allows full filesystem extractions without jailbreaking the
device. Once installed on the device, the agent escapes the sandbox through software
exploits, gaining unrestricted access to the device and establishing a connection between
the device and the computer. Agent-based extraction is forensically safe, and it is usually a
lot faster and safer than most jailbreaks. At the time of writing, supported devices include
all iPhones from the 5s up to the iPhone 12, running iOS versions 9.0 to 14.3.

In May 2020, a major update for the unc0ver jailbreak was released, adding support for
devices based on A12-A13 chips. At the time of writing, unc0ver supports jailbreaking all
devices from the iPhone 5s up to the iPhone 12. Supported iOS versions range from iOS
11 to iOS 14.3.

Although jailbreaking a device allows full filesystem extraction, it's not considered a
forensically sound process. An investigator should consider safer options such as checkm8
or agent-based extractions first if they're supported.

Tip
It's important to note the difference between checkm8-based extractions and
jailbreaking the device through checkra1n or unc0ver. Tools such as Cellebrite
UFED and Elcomsoft iOS Forensics Toolkit leverage the checkm8 exploit to
temporarily provide access to the entire filesystem by running the exploit in
the device's RAM. When the extraction is complete, the device will reboot as
normal. No permanent changes will be made to the device.

On the other hand, jailbreaking the device will leave permanent traces and will
also require installing third-party packages such as Cydia or AFC2, making
additional changes to the device.

Challenges in iOS forensics
Smartphones are considered live, dynamic systems, and for this reason, they pose several
challenges from a forensic perspective because data and files are constantly changing.

One of the main complications that a digital investigator may face is dealing with a locked
device: recent iOS updates make passcode cracking almost impossible and other options
will have to be considered to extract as much data as possible.

Dissecting the iOS operating system 7

The growing number of devices and the variety of the software they run makes it
extremely difficult to develop a single tool and a consistent workflow to address all
eventualities. This is usually because a particular method that's used to extract data from
one device will stop working when a new version of iOS is released; in fact, forensic
extraction tools usually rely on security vulnerabilities to gain access to the device's
filesystem and extract a lot more data than what you would normally find in an iTunes
backup, or even to unlock a device when the passcode is unknown. When a new iOS
update is released, these vulnerabilities could potentially be patched, thus rendering the
tools useless.

The modern investigator will have to take these issues into account when approaching an
Apple device and decide, on a case-by-case basis, what the best technique will be to obtain
the broadest amount of valuable evidence.

Dissecting the iOS operating system
Performing a forensic examination of digital evidence from a mobile device requires not
only a full understanding of the data but also basic knowledge of how the device itself
works and how that data was generated. This is particularly challenging on iOS devices
due to the closed source nature of the platform, which makes it difficult to understand
how exactly iOS interfaces with all this data and what's going on behind the scenes
on the device.

Apple invests heavily in restricting the operating system and application software that can
run on their hardware through several security features: applications running on Apple
devices don't interact directly with the underlying hardware – they do so through a system
interface. The iOS can be defined as an intermediary between the device's hardware
components and the applications on the device.

Tip
Many publications provide information regarding iOS hardware. For a full list
of iPhone components and devices, you can refer to the Apple Support page:
https://support.apple.com/specs/iphone.

https://support.apple.com/specs/iphone

8 Introducing iOS Forensics

Understanding the iOS filesystem
Since iOS 10, Apple File System (APFS) has replaced HFS+ as the default filesystem.
APFS is a proprietary filesystem that has been designed with mobile devices in mind: it's
optimized for SSD storage and supports strong encryption. On iOS devices, the filesystem
is configured into two logical disk partitions – the system partition and the user partition:

• The system partition contains the iOS operating system and all the preloaded
applications that come with the device but contain little evidentiary information.
The system partition is only updated when a firmware upgrade is performed
on the device.

• The user partition, which is mounted to the /private/var directory, contains all
user-created data and provides most of the evidentiary information that's pertinent
to investigators.

Where is data stored on the iOS filesystem?
One of the examples of how iOS manages communication between applications and
hardware is sandboxing, which enables users to interact with an application without
accessing the filesystem directly, ensuring that each app is contained within one or more
specified containers that are automatically created when a new app is installed on the
device. This organization makes things a lot easier for investigators as all the files related
to a specific app are grouped in specific locations.

Each container has a specific role:

• The bundle container contains the application itself, including all the assets that
come with the application when it is downloaded from the App Store.

• The data container holds data for both the application and the user and is further
divided into several directories that the application can use to organize its data.

• The group container is where applications can store data that can be shared with
other apps of the same group.

Dissecting the iOS operating system 9

The following diagram shows the containers for each application:

Figure 1.1 – A representation of application containers

The data container contains several different folders:

• Documents/: This folder contains user-created files and is automatically included
in iTunes backups and iCloud backups.

• Library/: This folder is used by the application to store app-related data and is
not created by the user. This folder is included in iTunes and iCloud backups.

• Temp/: Contains application-related temporary files and is not included in backups.

As you can see, all application files are perfectly organized into their respective data
containers. However, you may be wondering where exactly these containers are stored
on the device's filesystem. Each application on a device is identified through a globally
unique identifier (GUID), also known as a BundleID identifier. This identifier is
uniquely generated when an application is first installed and can change if the app is
updated or reinstalled.

10 Introducing iOS Forensics

Application bundle containers are stored at the following path on the iOS filesystem:

/private/var/containers/Bundle/Application/<app-GUID>/

Application data containers are stored at the following path:

/private/var/mobile/Containers/Data/Application/<app-
GUID>/

Group containers are stored at the following path:

/private/var/mobile/Containers/Shared/AppGroup/<app-
GUID>/

Tip
In this section, we've seen where applications store data on the iOS filesystem.
But what about system artifacts? System-related data is stored all over the
filesystem, so we won't find everything all in one place! We'll dive deep into
system artifacts and where to find them in Chapter 4, Working with Common
iOS Artifacts.

How is data stored on the iOS filesystem?
So far, we've learned how iOS organizes application data into containers and where these
containers are stored on the filesystem. Now, let's discuss the types of files that commonly
contain useful evidence within the iOS filesystem.

Other than user-generated content (such as documents, photos, videos, or text files), data
stored on an iOS device usually consists of the following items:

• SQLite databases: SQLite is a standalone, self-contained database that can store just
about any kind of data, including binary BLOBs, all in one file. SQLite databases
are the primary source of storage for applications and system data, so parsing these
databases will be one of the focus points of most digital investigations. Databases
can also be extremely useful if you wish to attempt to recover deleted data, as
deleted records usually leave a digital trace in the database itself or its temporary
files. Essential artifacts such as SMS messages, WhatsApp conversations, contacts,
call logs, notes, and browser history are all stored in SQLite databases.

• Property List Files (Plists): Plists are structured files that are used by iOS and
applications to store, organize, and access data on the device. These can be stored in
XML format or binary format. Typically, plists are used to store application settings
or user preferences.

Understanding iOS security 11

• Other file types: This includes log files, XML files, Protocol Buffers, and Realm
databases. These file types will be covered in depth later in this book.

This is what a property list looks like in XML format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

 <dict>

 <key>UUID</key>

 <string>3bdd52c7-ee36-4689-8517-c5fed2c98s5</
string>

 <key>ClientID</key>

 <string>3bdd52c7-ee36-4689-8517-c5fed2c98s5</
string>

 <key>ClientEnabled</key>

 <false/>

 </dict>

</plist>

In the following chapters, we will do a deep dive into the details to understand what the
best practices are for parsing plists and querying SQLite databases, how to handle SQLite
temporary files in a forensically sound way, and where to locate core iOS artifacts.

Understanding iOS security
Apple devices are widely known for their ability to secure user data. With every release
of a new iOS device or update to the iOS operating system, Apple works hard to improve
security by introducing new features and by patching known vulnerabilities. In the
following sections, we'll go over the key elements of Apple's security model.

User authentication
To secure physical access to the device, some form of user authentication is required. iOS
devices implement authentication through two mechanisms:

• Passcode authentication

• Biometric authentication

12 Introducing iOS Forensics

By default, Apple devices suggest a six-digit numeric passcode, although the user can
choose a four-digit passcode too or a custom alphanumeric code. Once a passcode has
been set, the user will have to enter it every time the device is turned on and when it
wakes up.

To improve the user experience while maintaining high-security standards, with the
iPhone 5s, Apple introduced biometric authentication through Touch ID, which uses
fingerprints as a passcode. With the release of the iPhone X, Apple introduced Face ID,
which employs face recognition to unlock the device.

Unlocking passcode-protected iOS devices is one of the main challenges in
mobile forensics.

Because there are a relatively small number of numeric passcodes, brute-force guessing
attacks could theoretically be used to exploit authentication. However, this is extremely
risky as iOS is designed to rate-limit passcode entry attempts, and data can be
permanently deleted from the device if too many failed attempts occur.

This passcode is not just used to unlock the device itself – it's one of the key features of
the iOS data protection model: the passcode, combined with the hardware encryption
key, is used to generate a unique and extremely strong encryption key that is used by an
algorithm to encrypt user data.

Encryption and Data Protection
While user authentication provides a degree of security in preventing unauthorized
access to the physical device, these mechanisms could still be bypassed by exploiting
vulnerabilities in software or hardware. A compromised device could potentially allow
unauthorized access to the device's filesystem. For this reason, starting with the iPhone 4,
the entire filesystem is encrypted using strong cryptography algorithms. However, with
the release of the iPhone 5s, Apple set a new precedent in mobile security by introducing
a technology called Data Protection, which relies on multiple dedicated components to
support encryption and biometrics.

Secure Enclave
At the heart of iOS's security is Secure Enclave, a dedicated system on a chip (SoC)
isolated from the main processor and operating system that provides cryptographic
operations for data protection and key management.

Secure Enclave's main components are as follows:

• Secure Enclave Processor (SEP), which runs an Apple-modified version of the L4
microkernel and provides computing power exclusively to Secure Enclave.

Understanding iOS security 13

• A memory protection engine.

• A True Random Number Generator (TRNG), which is used to generate random
cryptographic keys.

• Dedicated Advanced Encryption Standard (AES) hardware engines, which
communicate directly with the SEP through a secure channel and perform in-line
encryption and decryption as files are written or read.

• A unique ID (UID), a cryptographic key that uniquely identifies the device. The
UID is randomly generated and fused directly into Secure Enclave's hardware
during device manufacturing, so it isn't visible outside the device.

• A dedicated, secure, nonvolatile storage system that can only be accessed by Secure
Enclave. This is where data encryption keys are stored, ensuring that these are never
exposed to iOS systems or applications.

The following diagram shows the different components of Secure Enclave:

Figure 1.2 – Secure Enclave components

14 Introducing iOS Forensics

Secure Enclave is responsible for several different security-related operations, including
generating and storing keys necessary for encrypting data on the device and evaluating
biometric data from Touch ID and Face ID.

SEP uses the UID to generate cryptographic keys that are tied to the specific device. This
adds another layer of security: if the device's SSD storage is physically moved to a different
device, files can't be decrypted and thus will be inaccessible, since every device has a
unique UID and the original UID is required to decrypt files.

iOS Data Protection keys
Data protection on iOS is implemented by generating and managing a hierarchy of
cryptographic keys.

To make things easier, before we delve into the details, let's take a look at what keys are
used during the encryption and decryption processes and what their purpose is:

Figure 1.3 – Cryptographic keys used for iOS data protection

• The device's UID is an AES 256-bit key that's fused directly into Secure Enclave
during manufacturing. This key, together with the user's passcode, is used to unlock
class keys.

• Class keys are generated when specific events occur on the device; for instance,
when a device is unlocked, a complete protection class key is created. Shortly after
the device locks, the decrypted class key is discarded. Class keys are used to wrap
and unwrap file keys.

• File keys are 256-bit keys that are used to encrypt the content of each file; these
keys are per-file keys and, as such, are randomly generated every time a new file
is created on the user partition. File keys are encrypted using a class key and are
then stored in the file's metadata. The metadata of all the files is encrypted with the
filesystem key.

Understanding iOS security 15

• The filesystem key is a random key that is generated when iOS is first installed or
when the device is wiped. The filesystem key is stored on the device, and it's been
designed to be quickly erased if the user requests it. Deleting the filesystem key
makes all the files on the filesystem inaccessible.

iOS Data Protection classes
Let's take a closer look at the class keys.

Apple allows developers to specify security settings for each file by selecting a protection
class that is assigned to a file when it is created. There are four different protection classes,
depending on how the file is meant to be accessed:

• Complete Protection: Class keys for this protection are decrypted when a device is
unlocked and are automatically evicted shortly after device lock, so a file associated
with this protection class will only be accessible when the device is unlocked.

• Protection Unless Open: This protection class allows files to be created and
encrypted when the device is locked, but only decrypted when the device is
unlocked. This is used, for example, when an email attachment is downloading in
the background.

• Protected Until First User Authentication: Class keys for this protection are
decrypted when the device transitions from a before first unlock (BFU) state to an
after first unlock (AFU) state and remain in memory, even if the device is locked.

• No Protection: The class keys for this protection class are always available in
memory when the device is on.

Encrypting content while performing normal operations on a device can be challenging.
Protection classes allow files to be encrypted safely, modulating the degree of protection
based on how and when each file needs to be accessed.

For example, data that is useful to applications running in the background, such as
messages or contacts, can be assigned to the Protected Until First User Authentication class;
this allows data to be accessible to the device while keeping it encrypted.

iOS data encryption and decryption
When a file is written to the filesystem, the content of the file is encrypted with a per-file
key, which is wrapped with a class key and stored in a file's metadata. The metadata is then
encrypted using the filesystem key.

16 Introducing iOS Forensics

We've already seen how class keys are generated using a combination of the hardware's
UID and the user's passcode while the filesystem key is generated upon iOS installation
and stored on the device. Now, let's analyze the individual file encryption process step
by step:

1. Every time a file is created on the filesystem, Secure Enclave creates a 256-bit file key
and passes this key to the hardware AES engine.

2. The AES engine encrypts file content while it is written to flash memory using the
provided file key.

3. The file key is then wrapped with one of the four class keys, depending on the
assigned protection class, and is stored in the file's metadata.

4. Metadata for all the files is encrypted with the filesystem key.

All key handling happens in Secure Enclave, thus never exposing the operations to the
system and its applications.

The decryption process works the other way round:

1. When a file is opened, its metadata is decrypted using the filesystem key, revealing
the wrapped file key and the assigned protection class.

2. The file key is unwrapped using the class key and is then passed to the AES engine.
3. The hardware AES engine decrypts file content while it reads the file from memory,

using the provided file key.

Tip
Key wrapping is the process of encrypting one key using another key to
securely store or transmit it.

Although the data protection architecture may seem complex, it provides both flexibility
and good performance.

By now, you should have a basic understanding of where iOS stores application data, how
data is structured, and how iOS leverages authentication and data protection to guarantee
a high level of security on all devices.

In the next section, we will learn about the guidelines for a forensically sound
examination process.

Establishing a workflow 17

Establishing a workflow
Although there is no well-established standard process for mobile forensics, there are
some common guidelines that can be followed to ensure that the examination will be
carried out through a proper methodology. This will make the process forensically sound
and the results reliable.

Generally, a mobile forensics examination can be broken down into the following
six steps:

1. Seizure and identification
2. Preservation
3. Acquisition
4. Analysis
5. Validation
6. Reporting

Tip
The key point to understand here is that the process you use to examine the
mobile device and extract data from it is what makes the examination forensic.
It is neither the software nor the hardware you use, but solely the process that
you use during the examination that makes it truly forensic.

These guidelines and processes should be periodically reviewed as technology continues
to evolve and different mobile devices are marketed.

Seizure and identification
The first step pertains to the physical seizure of the device. This involves gathering
information on the type of incident that the device was involved in and at least some basic
information on the device's owner.

The way the seizure occurs depends on your jurisdiction, so you should be familiar with
laws regarding seizing and analyzing smart devices and what the requirements are (that
is, a search warrant is usually required). At this stage, you should also have a general
understanding of what data you are expected to find, as this will help you define specific
objectives and plan the next steps according to your requirements.

First and foremost, you need to document everything you do and consider how to
preserve evidence. How you handle the device matters and it can have a huge impact on
the outcome of the investigation.

18 Introducing iOS Forensics

You should also note the state that the device was found in. The following are
some examples:

• Is the device powered on or off?

• Is the device protected by a passcode?

• Is the passcode known?

• Is the SIM card present?

• Is there any visible damage?

• What's the date and time on the device?

• If the device is on, what apps are running?

• Basic ownership information.

One of the fundamental aspects of a forensically sound process is that operations should
be carried out without altering or changing the contents of data that resides on the device
in any way. Note that iOS devices are live, dynamic computer systems, so any kind of
interaction with the device would result in changes to system files and databases, not to
mention the possibility of inadvertently deleting temporary files that could contain useful
evidence. Care should be taken to limit all interaction with the device, except for the
preservation operations, which will be indicated in the next section.

Once the device has been seized, an investigator could be tempted to manually access
data from the device, such as by running messaging apps and viewing conversations
directly from the device's screen; however, this should be strongly discouraged as this
would result in system logs and other system-related files being altered, which is not
forensically sound behavior.

At this stage, the investigator will also have to identify the device, its hardware model, and
the iOS version. This information will be useful if you wish to start assessing what options
the investigator has for extracting evidence from the device.

For each examination, the investigator should also identify the following:

• The legal authority for examining the device

• The goals of the examination

• Other sources of potential evidence (including cloud storage)

Establishing a workflow 19

Preservation
Smartphones are, by design, meant to communicate through cellular networks, Bluetooth
connections, and wireless Wi-Fi networks. To prevent the device from communicating,
it is important to isolate the device as soon as possible. Isolating the device prevents new
data (incoming calls, incoming messages, and so on) from modifying existing evidence
and thus enforces data preservation. Additionally, if the device were allowed network
access, data destruction could occur as Apple products can be remotely wiped via a
kill signal.

The easiest way to isolate an Apple device is by enabling Airplane mode; this deactivates
the device's wireless and cellular connections. You can enable Airplane mode from the
device's Settings or, if the device is locked, directly from the control center by swiping up
from the bottom. If the device is an iPhone X or newer, you can access the control center
by swiping down from the top-right corner. However, it's worth noting that isolating the
device can also be accomplished by putting the device in a Faraday bag, a container made
of metallic shielding that blocks the radio frequencies used by cellular networks, GPS, and
Wi-Fi networks.

Don't forget to keep the device charged to ensure it doesn't power off. Generally speaking,
you want the device to remain in the state in which you found it:

• If the device was off, leave it off.

• If it was on, make sure you leave it on so that it doesn't lock!

This is particularly important if the device is passcode protected and the investigator
doesn't have the code: if the device powers off, it would transition from an AFU state
to a BFU state, rendering data recovery much more challenging and, in some cases,
impossible. We will learn more about device states later in this chapter.

Tip
One of the most common mistakes is removing the SIM card from an
unlocked device to isolate it from a cellular network. This may make sense
when you're working with different devices, but you want to avoid removing
the SIM card from iPhones or iPads because doing so will result in iOS
automatically locking the device, biometric unlock will be disabled, and USB
restricted mode will be activated.

20 Introducing iOS Forensics

After successfully seizing and isolating the device, care should be taken to maintain the
device's chain of custody. NIST defines the chain of custody as follows:

"A process that tracks the movement of evidence through its collection,
safeguarding, and analysis life cycle by documenting each person who

handled the evidence, the date/time it was collected or transferred, and the
purpose for the transfer."

You can learn more about this topic by visiting the following website: csrc.nist.gov.

Acquisition
Acquisition is the process of obtaining information and evidence from a device.

Before the actual acquisition process begins, you should have a clear understanding of
what kind of evidence you're looking for as this will have a great influence on the tools you
choose to use.

Generally speaking, there are three different kinds of data acquisition, and the method the
investigator chooses affects how much data can be extracted from the device:

• Logical acquisition

• Full filesystem acquisition

• Physical acquisition

In the following table, you can see what kind of data can be extracted with each method:

Table 1.2 – Comparison of data that can be extracted with different acquisition methods

http://csrc.nist.gov

Establishing a workflow 21

Logical and filesystem extractions
As you can see, a logical acquisition will extract some user-generated data from the device
such as photos, messages, and notes. A logical extraction will usually be the easiest and
quickest type of extraction and most forensic tools support it. However, considering
the number of files available on an iOS device, only acquiring the full filesystem will
give access to precious evidence such as third-party app data, precise location data, and
pattern-of-life information.

A filesystem extraction is a representation of the files and folders from the user partition
of the device; it is possible to partially recover deleted data by analyzing databases and
temporary files, such as WAL files.

Physical extraction
Devices up to and including the iPhone 4 can undergo a full, forensically sound physical
extraction of the entire raw disk. This kind of extraction delivers the most data as, much
like a standard hard drive, both the system and the user partitions are extracted, as well as
unallocated areas of the disk. This is incredibly useful as it allows investigators to recover
deleted data, including messages, photos, and videos. However, with the introduction
of iOS 5, Apple changed the way data was encrypted on disk and enabled other security
features, such as data protection class keys. At the time of writing, extracting a physical
image of modern iOS devices is simply not possible.

Choosing the best acquisition method
Investigators should always perform a logical acquisition first and then, if possible,
attempt a filesystem or physical acquisition.

Jailbreaking the device is generally required to enable unrestricted access to the device's
filesystem; however, more and more vendors are adding the possibility to run forensically
sound checkm8-based extractions (all operations are performed in the device's volatile
RAM) or agent-based extractions. Both options allow you to obtain the full filesystem
without jailbreaking the device.

At the end of the day, the method you choose will usually depend on four variables:

• The state in which you find the device (locked or unlocked)

• The device model and iOS version

• The tools you have access to

• The possibility of jailbreaking the device

22 Introducing iOS Forensics

If the device is locked and you don't have the passcode, there is not a simple solution
that can consistently bypass iOS security. However, depending on the device model,
several options can provide a limited amount of data. We will examine these in detail
in the next chapter.

If the device is unlocked, depending on the available tools, you can attempt a filesystem
extraction. You should start with the less intrusive option, such as an in-memory checkm8
exploit, if your tools support it. If the device doesn't allow checkm8 exploiting, you can
attempt an agent-based extraction if the iOS version is compatible. Although this entails
installing an agent on the device and some minor changes can occur, this is considered
forensically safe. If neither of these options is available, you can consider jailbreaking
the device through checkra1n or unc0ver. Make sure you understand how the jailbreak
works, how it affects the device, and what the risks are. Finally, if none of these options are
available, you will have to go for a logical acquisition.

We will learn all about extracting data from iOS devices in the next chapter, but for
now, it's important to note that the phone should be acquired using a tested method
that is repeatable and is as forensically sound as possible. It is highly recommended to
experiment with various tools on test devices to determine which acquisition method and
tool work best with different devices.

If you don't have direct access to the device, there are other sources of evidence you can
consider, such as iTunes backups and iCloud extractions.

Analysis
The main point of doing a forensic examination is to find, extract, and process evidence
related to a particular case or investigation.

Although there is no standard process to analyze what you extracted from a device, here
are some guidelines that should help you get started:

• Go through all the available data to become familiar with the main sources of
evidence found on the device.

• Use your tools and forensic software to quickly parse common data sources, such as
SMS databases, installed apps, call logs, photos, and so on.

• Attempt to recover any deleted data both with software and by manually carving
binary files, logs, plists, and SQLite databases.

• Identify key artifacts by searching for keywords and details that are specific to
your investigation.

Establishing a workflow 23

• Harvest metadata from files and look for hidden evidence (timestamps, geolocation
data, binary BLOBs, and so on).

• Find relationships between different artifacts.

• Perform temporal analysis on all acquired evidence, building a timeline of relevant
artifacts and events.

When you're dealing with a limited amount of data, it may be possible to assess evidence
by manually browsing through all the folders and viewing the contents of the files on your
workstation. However, when you're looking at gigabytes of data sources, including SQLite
databases, caches, and plists, you'll probably have to resort to using forensics tools. In such
cases, investigators must develop a strategy to use the best tools, depending on the type of
digital evidence and the goals of your investigation.

We'll cover commercial tools in detail in Chapter 2, Data Acquisition from iOS Devices and
Chapter 3, Using Forensic Tools, but before that, it must be noted that all mobile forensics
tools are just application software. These tools are not magical things that conduct
autonomous processing and reporting simply by clicking a button! Digital investigators
must understand the features and limits of each tool.

Mobile forensic tools typically differ in the kind of extraction that can be done, but
different tools are also compatible with different devices and different versions of the iOS
operating system. With the variety of different types of mobile devices, no single software
supports all mobile devices.

Automated tools can speed up the time it takes to process huge datasets and I strongly
believe that the modern investigator should have more than one tool available.
However, this process is not a substitute for a methodical, manual forensic
examination and validation.

In the end, it all comes down to the target device model, the iOS version, the type of
extraction, the goal of the examination, and how the produced evidence might be
used later.

Validation
After processing evidence from the device, the investigator must verify the accuracy of all
the steps that have been carried out. This process should not focus exclusively on verifying
the data extracted from the device. It should also entail validating the tools that were used
for the examination and validating the entire process to ensure it has been carried out in a
forensically sound way.

Unfortunately, validation is one of the most overlooked aspects.

24 Introducing iOS Forensics

Before starting an examination, it is highly recommended to experiment with various
tools on test devices and known datasets to determine which acquisition and analysis tools
work best with specific iOS device models and versions.

Established procedures should lead to the process of acquisition and analyzing a device.
This is especially true when an investigator is working on data from third-party apps or
Unidentified Forensic Objects (UFOs). Practices must be tested to ensure that the results
that have been obtained are valid and independently reproducible.

An examiner who is called to testify on their findings should be able to explain not only
what evidence was found, but also where that data was found and how the iOS operating
system generated those artifacts. This could entail manually decoding binary data and file
carving. Analyzing actual binary files that user data was parsed from, along with SQLite
databases and plists, offers the investigator the opportunity to perform deep analysis of
the iOS device's filesystem, extracting evidence that could be missed by relying only on
automatic tools.

The following list resembles some of the best practices regarding verification
and validation:

• Hash values: All the files that are extracted from the device should be hashed
during the acquisition process to ensure that no changes occur. If you're doing a
filesystem extraction, you can calculate the hashes for each file at the end of the
process. Data integrity can be verified by calculating the hash for a single file and
checking it against the original value.

• Deterministic tools: All the tools that are used for an examination should be
deterministic: a given tool should produce the same output when given the same
input data, under the same circumstances.

• Data verification: Check if known data stored on the device is reported accurately,
without any modifications. Generally, data that's extracted from the device should
match the data that's viewed on the device's screen.

• Tool accuracy: The quality of the output of a tool should be checked by using
multiple tools to extract/process the same data and compare results.

• Process testing: When working on UFOs or artifacts where there is not an
established examination process yet, validate your findings by testing each solution
on different devices and under known control conditions and evaluate the results of
each test.

Establishing a workflow 25

Reporting
The last step in the mobile forensics process is reporting. Reporting can be defined as the
process of preparing a detailed summary of what was done to acquire and analyze digital
evidence from a mobile device. A forensic report should also include all the relevant
evidence, presented in a clear, concise manner, and the conclusions that were reached in
the investigation.

Many forensic tools provide a built-in reporting feature that allows you to automatically
generate a digital report that includes items from the investigation, such as the following:

• Key artifacts

• Device identification (model, s/n, phone number, and so on)

• Case number and the analyst's name

• Date and time of when the examination took place

• Tools that were used for extraction and analysis

Depending on your jurisdiction, a forensic report should also describe how the data was
extracted (logical, physical, or filesystem extraction) and explain what measures were
taken to ensure the entire process was repeatable and forensically sound.

Timeline analysis
One of the most common forms of forensic reporting includes temporal analysis, which
is defined as the process of creating a timeline of events that occurred on the device at a
specified date and time.

A timeline generally includes data from a variety of sources; for example, location data,
system logs, and messaging evidence can be combined and can lead to the discovery of
what happened, where it happened, and when it happened.

Determining when events occurred on the device and associating device usage with an
individual by reporting logs, files, and timestamps can be extremely useful.

26 Introducing iOS Forensics

Summary
In this chapter, we learned what the goal of a forensic examination is and how the
discovery of the checkm8 vulnerability provides new opportunities for data acquisition
from iOS devices.

First, we introduced the iOS operating system and discussed some key elements of its
security architecture, such as Secure Enclave and Data Protection. Then, we went through
the steps of an iOS forensic examination.

The first step is seizing the device and adopting techniques to preserve evidence, such as
placing the device in a Faraday bag or enabling Airplane mode. There are different ways
to acquire data from an iOS device, depending on the model, iOS version, and what tools
are available. This chapter covered logical and filesystem acquisition techniques, as well as
jailbreaking and agent-based extractions.

Analyzing artifacts should be done by following a thorough validation process that
ensures that commercial tools produce consistent results and that evidence has been
processed in a forensically sound way.

Finally, we learned what key elements should be included in a forensic report.

The next chapter will discuss iOS data acquisition in detail and provide a hands-on
approach to the tools that are used to conduct a forensic examination.

2
Data Acquisition
from iOS Devices

Mobile devices present a unique set of challenges compared to desktop computers when
approaching the data acquisition phase. While in the world of desktop computers there
is a consolidated workflow that allows an investigator to carry out a so-called forensically
sound acquisition, when we're dealing with mobile devices there is no single, one-size-
fits-all procedure that can be adapted to each and every device. This becomes even more
evident when we are dealing with iOS devices, as the variety of models and different
versions of iOS implies that the procedure to be carried out to achieve a satisfactory
acquisition will be different, depending on the device itself. Often, a particular tool,
exploit, or vendor solution will stop working if the device is updated to a new iOS release.
This is the case for most jailbreaks that rely on publicly disclosed vulnerabilities that are
subsequently patched by Apple. A further challenge is represented by the possibility of
dealing with locked devices; in this case, the chances of extracting useful information
from the device are much more limited.

For these reasons, data acquisition is arguably the most challenging aspect of the iOS
forensic workflow. In this chapter, therefore, we will discuss various solutions, starting
by distinguishing the different types of acquisition methods and their limits. We will
then move on to the practical phase, in which we will learn how to perform a logical,
a filesystem, and a physical acquisition of an iOS device.

28 Data Acquisition from iOS Devices

In this chapter, we will cover the following topics:

• Understanding acquisition methods

• Jailbreaking the device

• Triaging the device

• Performing a logical acquisition

• Performing a full filesystem acquisition

Understanding acquisition methods
In the first chapter, we briefly discussed acquisition methods and the difference between
a logical, filesystem, and physical extraction. We will now be building on that foundation
and diving deep into more advanced topics to gain a full understanding of how they work
and what kind of data we can expect from each of these acquisition methods.

Logical acquisitions
A logical acquisition is usually the easiest and fastest way to extract the most common
types of evidence from an iOS device. If the device is unlocked or if you have the
passcode, you will certainly be able to perform a logical acquisition, as all iOS devices
support it; based on the Apple File Connection (AFC) protocol, this acquisition is
essentially equivalent to running a local (iTunes) backup, and some forensic tools will
actually rely on Apple's libraries and iTunes capabilities to extract data from the device.

A logical acquisition can be performed using free software like iTunes, third-party
libraries such as libimobiledevice, or by using forensic software. In the following
sections of this chapter, we will use three of the most popular digital forensics tools to
perform a logical acquisition: Cellebrite UFED, Elcomsoft iOS Forensic Toolkit, and Magnet
ACQUIRE.

As we've learned from the previous chapter, the main limitation in a logical acquisition
is the depth and quality of the data that is extracted; although it will include most user-
generated content, such as text messages, call logs, photos, and notes, it will not include
other precious artifacts, such as emails, location data, third-party apps, and precise system
logs. The key point to understand here is that both Apple and iOS developers can restrict
logical extractions by deciding which files will be included in a backup and which files will
not be backed up. For instance, many popular applications, such as Twitter, Facebook,
Instagram, Telegram, or Signal, do not include their files in a local backup, so these
artifacts will not be available through a logical acquisition.

Understanding acquisition methods 29

To make things even more complicated, with the release of iOS 4, Apple introduced
a feature that enables the user to encrypt local backups using a password. This setting
can be activated by using iTunes and, once enabled, all subsequent backups will be
automatically encrypted using the provided password. In other words, if I decide to
enable backup encryption, the next time I attempt a local backup on any computer, the
password will be required to read the backup files. Clearly, this poses a problem for the
forensic investigator on several fronts; if backup encryption is enabled and the password is
unknown, data extracted from a logical acquisition will be useless, as it won't be possible
to decrypt it. Some forensic tools, such as Elcomsoft Phone Breaker, allow investigators
to attack the encrypted backup by brute-forcing the password; however, this does not
guarantee that the password will be effectively recovered, and brute-force attacks usually
take quite a long time.

There is, however, another option. Since iOS 11, Apple introduced the possibility of
removing the password used to encrypt local backups directly from the device.

Here's the caveat: although this solution works perfectly, it does not only remove the
encryption password but also resets all the device's settings. Clearly, this will have an effect
on some of the files stored in the device, but it may be your only option if you don't have
access to the backup password.

Here's how to reset the local backup encryption password:

1. From the iOS device, go to Settings | General | Reset.
2. Select the Reset All Settings option and enter the device passcode.
3. Follow the steps to reset the device.

By following this procedure, you will not lose any user data or other passwords, but it will
reset general device settings, such as wallpaper, display settings, and so on. This will, of
course, cause some changes to system files and databases; for this reason, if you're dealing
with a device in a criminal case, be sure you understand the consequences of making
changes to the original device and make sure you have the legal authority to perform this
kind of operation.

30 Data Acquisition from iOS Devices

Tip
It's important to note that, since iOS 13, if the user decides to encrypt a local
backup, a lot more data will be included, including some data from Keychain,
calls, health data, Safari history, and so on. When performing a logical
acquisition, most forensic tools check whether backup encryption is enabled,
and if it's not, it is temporarily enabled to acquire the biggest amount of data
and then disabled again when the acquisition process finishes. Keep this in
mind – if you don't encrypt backups before performing a logical acquisition,
you will miss crucial evidence!

To have a better understanding of what artifacts you can expect to find in a logical
extraction, take a look at the following screenshot taken from Cellebrite Physical Analyzer,
which shows what data was acquired from an iOS device through a logical acquisition:

Figure 2.1 – Data acquired through a logical acquisition

The main reason why you would want to perform a logical acquisition is when working
with newer devices, because they are generally supported following the release of an iOS
update, so you won't have to wait too long to start collecting evidence; however, as we've
already discussed, many items will not be included in a logical acquisition.

Understanding acquisition methods 31

In comparison with a standard logical extraction, a full filesystem extraction or a physical
extraction gives investigators access to a lot more user data on iOS devices, including full
access to Keychain, which will also include encryption keys that can be used to decrypt
data from secure apps, such as Signal, Wickr, Snapchat, or Facebook.

By acquiring the full filesystem, investigators will also gain access to many of the system
artifacts, such as the complete history of events that occurred on the device (locked/
unlocked states, user interaction, installed applications, AirDrop, Bluetooth, camera, and
airplane mode history). Also, a lot more geodata will be available from a full filesystem
acquisition, including artifacts from cell towers, Wi-Fi connections, and GPS locations
with the corresponding geo-coordinates and timestamps.

The following screenshots show the differences between a logical acquisition and a full
filesystem acquisition from the same device; the full filesystem extraction, on the right,
contains a lot more data:

Figure 2.2 – Comparison of data extracted from a logical and a filesystem acquisition

32 Data Acquisition from iOS Devices

By now, you should have a clear understanding of the benefits and limits of a logical
acquisition and why it may not be sufficient to gather the required evidence. We will learn
how to perform a logical acquisition later on, but before that, let's take a look at how we
can extract the device filesystem by performing a physical or full filesystem acquisition.

Physical acquisitions
In the first chapter, we briefly introduced physical acquisitions and learned how a physical
extraction will contain the biggest amount of evidence from a device, including data
present in unallocated space on the disk that can be used to recover deleted artifacts.

A physical acquisition can be defined as a bit-per-bit copy of the device's flash memory.
Clearly, this is the best of all worlds for a forensic examiner, but it isn't always possible;
since data on an iOS device is encrypted, using traditional techniques such as imaging
the physical volume would result in the acquisition of encrypted data, which would
be completely useless. We've already seen how Apple manages security by protecting
encryption keys within the Secure Enclave, so starting with the iPhone 5s, there is no way
of obtaining a physical extraction of the device.

At the time of writing, the latest device that allows a physical acquisition to be performed
is the iPhone 5c, a device released almost eight years ago. It's safe to say that, at present,
it's highly unlikely that an investigator will run into one of these devices; nevertheless,
a physical acquisition can be carried out by using the Elcomsoft iOS Forensic Toolkit.

Filesystem acquisitions
A full filesystem acquisition provides a logical representation of all files on an iOS device,
and this is a great compromise between a logical acquisition and a physical one. All
the data we previously saw in a logical extraction is still obtained during a filesystem
acquisition, but the examiner is also granted access to raw files stored within the device.
This allows investigators to access, for example, databases of all third-party applications
without restrictions, and recovery of deleted artifacts can also be attempted.

Although there are many tools that allow you to perform this kind of acquisition, Apple
restricts direct access to the device's filesystem, so you will have to find a workaround to
gain full access to the device before a full filesystem acquisition can be performed.

So, you may be wondering – how do I access the device filesystem? Is a jailbreak required?
Although jailbreaking is one of the available options, it is not the only one.

Understanding acquisition methods 33

At the time of writing, there are three different solutions to gain access to the
device's filesystem:

• Using tools that leverage Checkm8, a BootROM exploit

• Using an extraction agent

• Jailbreaking the device

Checkm8
The publication of the Checkm8 vulnerability in 2019 by the hacker @axi0mX, which is
based on an unpatchable vulnerability present in the BootROM of millions of iOS devices,
is arguably the biggest game changer ever in the forensics industry.

Checkm8 is compatible with A5 to A11-based devices; this includes all devices
starting from the iPhone 5s up to the iPhone X, as there is no working implementation
for 4S hardware.

Before we get into the details, it's useful to understand how the iOS boot procedure works
and why the Checkm8 vulnerability cannot be patched.

iOS boot process
The first layer of security in the iOS platform is the secure boot chain, which refers to the
sequence of steps carried out by the application processor, starting with the loading of the
BootROM and ending with the loading of the iOS. This ensures that attackers cannot run
a modified operating system or malicious applications on the device. The boot process
relies on a chain of trusts, which begins from the key that is embedded into hardware
during manufacturing.

The boot process of an iOS device can be broken down into five steps: the BootROM,
the Low-Level Bootloader (LLB), iBoot, the kernel bootloader, and the main operating
system. iOS has a very strict process of booting the operating system, where each stage
checks the authenticity of the following stage. This is achieved by digitally signing each
step of the process. The steps are as follows:

1. When the device is powered on, the processor executes the code in the BootROM,
which is a read-only block of memory that's created during the manufacturing
process. The BootROM contains the Apple Root CA public key, which is used to
decrypt the LLB.

34 Data Acquisition from iOS Devices

2. The LLB is the lowest level of code that can be updated via a software update. It
initializes and executes the second-level bootloader called iBoot, after verifying its
authenticity. If the verification fails, the device enters recovery mode, or Device
Firmware Upgrade (DFU) mode, which requires a factory reset to resolve.

3. The iBoot bootloader verifies, loads, and executes the iOS kernel.
4. The kernel loads the system core services and iOS components.
5. The iOS operating system is launched.

The following diagram illustrates the entire process:

Figure 2.3 – iOS secure boot chain

As you can see, the first step in the boot process is the execution of the code from the
device's BootROM. This stage of the process is implicitly trusted because, as its name
implies, the BootROM is a read-only memory component that cannot be modified after
manufacturing by anyone, not even by Apple.

The Checkm8 exploit is based on a vulnerability that resides within this portion of read-
only memory, so this means that Apple has no way of patching it, leaving hundreds of
millions of iOS devices vulnerable. To have a better understanding of what a breakthrough
this is, keep in mind that the previous BootROM exploit was discovered in 2010!

Understanding acquisition methods 35

Tip
If you're interested in the technical details, you can find a full report on the
Checkm8 vulnerability at the following link: https://habr.com/ru/
company/dsec/blog/472762/.

Although Checkm8 allows developers to get around Apple's security and run low-level
code on the device's BootROM, Checkm8 is not a jailbreak by itself, as it requires
additional software that leverages the exploit to perform a fully fledged jailbreak.

checkra1n
checkra1n is the first publicly available jailbreak based on the Checkm8 vulnerability, and
it's the result of the hard work carried out by hackers and security researchers from all
over the world. Jailbreaking the device via checkra1n allows users to gain root permissions
and install unofficial applications and repositories, such as Cydia.

Investigators that are dealing with a device that is vulnerable to Checkm8 have the
possibility of jailbreaking the device through checkra1n, thus gaining access to the entire
filesystem and successfully performing a full filesystem acquisition.

However, from a forensics perspective, checkra1n definitely has its drawbacks:

• checkra1n requires a Mac or Linux system to apply the jailbreak to an iOS device.
Support for Windows is under development, although it is actually possible to run
checkra1n from a Windows PC by running a live CD, such as bootra1n.

• Any kind of jailbreak will leave permanent traces on the device due to the
modifications that are being made to the filesystem.

• Often additional packages will need to be installed on the device, such as Cydia,
AFC2, or SSH, which make more changes to the filesystem.

Checkm8 acquisitions
In light of these limitations, some vendors have come up with a built-in solution that
allows investigators to perform a full filesystem acquisition, exploiting the Checkm8
vulnerability but without actually jailbreaking the device.

Currently, this feature is available in some of the most popular forensic tools, including
Cellebrite UFED, Elcomsoft iOS Forensic Toolkit, and Oxygen Forensic Detective.

https://habr.com/ru/company/dsec/blog/472762/
https://habr.com/ru/company/dsec/blog/472762/

36 Data Acquisition from iOS Devices

The difference between these solutions and performing a traditional jailbreak through
checkra1n is that these tools do not modify the device in any way; the exploit is performed
in the device's RAM. Once the acquisition process ends, the device will reboot normally,
leaving no traces.

Whenever possible, this should be the preferred method to acquire the full filesystem
from an iOS device, as this is definitely the most forensically sound solution.

Agent-based acquisitions
The main drawback in Checkm8 acquisitions is that they're not supported by newer
devices like the iPhone 12 or the iPhone 13, as these devices are not vulnerable to the
Checkm8 exploit.

In 2020, vendors responded to these limitations by providing an alternative method
to extract the full filesystem from any iOS device, including the latest iPhone 12; this
solution relies on installing an extraction agent that will exploit software vulnerabilities,
gain access to the entire filesystem, and establish a secure connection between the device
and the computer.

Although this method requires installing an application (the agent) on the device, this is
considered forensically safe, as the agent leaves a drastically smaller footprint compared
to other solutions, like jailbreaking the device. The only traces left on the device are
some minor changes in system log files; however, because of this, depending on your
jurisdiction, you may need authorization or legal authority to use this method.

The following is a list of requirements to use this method:

• Supported iOS devices: all devices starting from the iPhone 5s up to iPhone 12.

• Supported iOS versions: iOS 9.0 through to iOS 14.3.

• Using an Apple ID registered in Apple's Developer Program is strongly
recommended for installing the agent on the device, as this relieves the need to
open internet access on the device.

Currently, Elcomsoft iOS Forensic Toolkit and Belkasoft Evidence Center X are the only
tools that provide agent-based extraction capabilities.

Jailbreaking the device 37

Jailbreaking the device
Finally, let's talk about jailbreaks! We've seen how it's possible to extract a full filesystem
from an iOS device by exploiting the Checkm8 vulnerability or by performing an agent-
based acquisition. However, as we've learned, both these methods have their limitations,
and there could be some cases where jailbreaking the device is your only option to
perform a filesystem acquisition.

Applying a jailbreak will leave some permanent traces on the device, so this option should
only be considered as a last resort and only if you have the legal authority to do so.

At the moment, the most popular jailbreaks are checkra1n and unc0ver. Both these
jailbreaks allow investigators to install third-party tools such as SSH, which will give
unrestricted access to the device's filesystem.

In the following table, you can check the compatibility for both these jailbreaks:

Jailbreaking with checkra1n
Previously in this chapter, we introduced checkra1n and we learned about its features and
limitations. We'll now take a deep dive and learn how to actually perform the jailbreak:

1. The first step is to head to checkra1n's official webpage and download the required
tool. You can download the latest version from https://checkra.in.

2. Once you have downloaded the file, run it and plug in the device. Make sure you
use a USB-A cable, as currently there is no support for USB-C cables.

https://checkra.in

38 Data Acquisition from iOS Devices

3. When the main window loads, check that the device is recognized. If your device is
running an A11 processor, you will need to head into Options and then enable the
Skip A11 BPR Check option.

If your device runs iOS 14.6 or later, you will need to head into Options and then
enable Allow Untested Versions:

Figure 2.4 – The main checkra1n screen

4. When you're ready, click Start. The device will reboot into recovery
mode automatically.

5. You will now be presented with instructions on how to reboot the device into
DFU mode. Follow the instructions until your device shows a black screen:

Jailbreaking the device 39

Figure 2.5 – Follow the instructions to put the device in DFU mode

6. At this point, checkra1n will begin the jailbreak process. The device will boot
PongoOS and should look like this:

Figure 2.6 – The device booting PongoOS

40 Data Acquisition from iOS Devices

7. Follow the onscreen instructions until the process finishes:

Figure 2.7 – Enter the passcode when requested

When the device reboots, you will find the checkra1n icon. Launching that application
will allow you to install Cydia. Once Cydia is installed, you can proceed to install any
third-party packages, such as SSH.

Remember that checkra1n is a semi-tethered jailbreak; if you reboot the device, you will
have to jailbreak it again using the checkra1n tool.

Once the device has been successfully jailbroken, you can perform a full filesystem
acquisition using the tool of your choice.

Triaging the device
When you're dealing with iOS devices, it's useful to gather some information directly from
the device prior to starting the acquisition process. Knowing what iOS version is running
on the device, for instance, can be useful to determine what the best acquisition method
is. For this purpose, we're going to use libimobiledevice.

Triaging the device 41

The libimobiledevice library is a cross-platform library that allows users to
communicate with an iOS device using their native protocol to provide access to the
device's filesystem, including information about the device and its internals. It works with
all devices, including the most recent ones.

The first step is to head to http://libimobiledevice.org, where the library can
be downloaded for free. If you're running Windows, instead of downloading the source
files and compiling them, you can download precompiled binaries from the project's
GitHub repository.

If you're running macOS, you can install the library simply by running the following
command from the terminal:

brew install libimobiledevice

If you're running a Linux distribution that supports the apt packet manager, you can
install the library by running the following command:

sudo apt-get install usbmuxd libimobiledevice6
libimobiledevice-utils

Once you have installed the library, connect the device to your forensic workstation and
run the following command from the terminal:

ideviceinfo

This command will connect to the device, parse data relevant to the hardware and
software, and display it on screen. Keep in mind that the device will have to be paired
with the host system by entering the passcode. If you're running Linux or macOS, you can
combine the previous command with the grep command to view some key data:

• Identifying the device model:

You can read the device model by running the following command:
ideviceinfo | grep ModelNumber

• Identifying the iOS version:

To identify what version of iOS the device is running, you can run the
following command:

ideviceinfo | grep ProductVersion

http://libimobiledevice.org

42 Data Acquisition from iOS Devices

• Identifying the device serial number:

The device's serial number can be parsed by running the following command:
ideviceinfo | grep SerialNumber

• Identifying the phone number:

Finally, to identify the phone number related to the SIM card in the device, run the
following command:

ideviceinfo | grep PhoneNumber

Deciding the best acquisition method
Once the device has been seized, it has been correctly isolated, and you have identified
the hardware model and iOS version, the next step in the examination process is assessing
what the best acquisition method is to extract the richest dataset from the device while
preserving data integrity.

Generally speaking, you'll want to keep these two concepts in mind before performing any
actions on the device:

• Acquire evidence by order of volatility.

• Acquire evidence, starting with the less intrusive method.

The first step in any acquisition process is determining the volatility of the data of interest;
for example, if the scope of the investigation is to extract photos from a device or parse
text messages, clearly this doesn't pose any kind of concern because this data is written on
the flash memory, it isn't volatile, and any acquisition method will extract these artifacts.
However, if the investigation seeks to understand how the device was used, or if there
was any human interaction on a particular date and time, or where the device was located
a few days ago, these artifacts are much more volatile, as log files and databases on iOS
devices are constantly overwritten. For instance, location data is generally maintained on
the device for several weeks; however, precise location data, including cell tower data, is
only maintained for a few days. In this case, we'll want to extract this kind of data as soon
as possible before it gets overwritten. This means performing a full filesystem acquisition
(if possible) before anything else, as logical acquisitions do not contain this data.

The investigator should have a clear understanding of how forensic tools work and what
impact they have on data and on the device itself:

• Anything you decide to do (including nothing!) will have an impact on the device.

• What impact will your actions have on the data?

Performing a logical acquisition 43

• Does the chosen acquisition method require a device reboot?

• Will artifacts of interest survive a device reboot?

• How long are artifacts stored on the device before being overwritten?

• What files or folders will be affected by a jailbreak?

• What changes will occur by running a Checkm8 acquisition?

• What changes will occur by performing an agent-based acquisition?

A logical acquisition will have virtually no impact on the device, so most often, this will
be your first choice. If the device is vulnerable to Checkm8 and if you have tools that can
perform this kind of acquisition, a Checkm8 acquisition will be the best option to gain
access to the entire filesystem without making any changes to the device. If this is not an
option, the next step would be considering an agent-based acquisition. Finally, as a last
resort, jailbreaking the device will give the investigator access to the entire filesystem, but
make sure you understand how this will affect the device and its data.

Performing a logical acquisition
Now that we've learned the theory, it's time to put it into practice by performing our first
logical acquisition.

Almost all forensic tools can perform a logical acquisition; we'll concentrate on two of the
most popular ones, Cellebrite UFED and Elcomsoft iOS Forensic Toolkit.

Cellebrite UFED is considered the industry standard, as it allows investigators to perform
a variety of different acquisitions, including a traditional logical acquisition, a partial
filesystem, a full filesystem acquisition through Checkm8, and a full filesystem acquisition
from devices that have been jailbroken.

Elcomsoft iOS Forensic Toolkit, on the other hand, can perform logical acquisitions, a full
filesystem acquisition from jailbroken devices, full filesystem acquisitions through agent-
based extractions, and it also supports physical acquisitions from older devices.

44 Data Acquisition from iOS Devices

Logical acquisition with Cellebrite UFED
In this example, we'll acquire an iPhone 6 running iOS 12:

1. The first step is to launch Cellebrite UFED and choose Mobile device from the
main screen:

Figure 2.8 – The home screen of Cellebrite UFED

2. Next, select the AUTO DETECT option or choose the device model using the
search function in the upper-left part of the screen:

Performing a logical acquisition 45

Figure 2.9 – Choose the device or let UFED auto-detect it

3. Once the device is recognized, UFED will show the available acquisition methods
depending on the iPhone model. Choose the Logical (Partial) acquisition
to continue:

Figure 2.10 – Choose the type of acquisition

46 Data Acquisition from iOS Devices

4. One of the best features of Cellebrite UFED is that it will allow you to select what
data you want to extract. This will greatly speed up the extraction process, allowing
you to access useful evidence within minutes. Select the artifacts that should be
extracted and click Next to start the acquisition process:

Figure 2.11 – Choose what artifacts should be extracted

Performing a logical acquisition 47

5. To perform a logical acquisition, the device must be unlocked. Consider disabling
Auto-lock from the device's settings. You should also Trust the computer when the
device prompts you for the pairing request:

Figure 2.12 – Establish pairing between the workstation and the device

48 Data Acquisition from iOS Devices

6. Wait for the task to finish successfully. The extraction summary will give you an idea
of what data was extracted and how many artifacts were found:

Figure 2.13 – The extraction summary displays what data was extracted

You can view the extracted data by loading the logical acquisition into a forensic tool, such
as Belkasoft Evidence Center X, Elcomsoft Phone Viewer, or Cellebrite Physical Analyzer.

Logical acquisition with Elcomsoft iOS Forensic Toolkit
Another great tool to perform acquisitions from iOS devices is the forensic toolkit by
Elcomsoft. This toolkit has been specially designed for iOS devices and offers some unique
features, such as agent-based extractions. The steps for this are as follows:

1. Launch Elcomsoft iOS Forensic Toolkit and check whether the device is correctly
recognized. As you can see from the following screenshot, the tool is divided into
four sections, which each deal with different acquisition processes. In our example,
we want to acquire a logical image and the device is not jailbroken, so we're going to
choose the Backup option, which will perform a logical acquisition:

Performing a logical acquisition 49

Figure 2.14 – The home screen of Elcomsoft iOS Forensic Toolkit

2. Choose the folder where the backup should be stored:

Figure 2.15 – Choose where the backup should be stored

50 Data Acquisition from iOS Devices

3. To obtain the fullest logical image, backup encryption should be enabled. The
toolkit will automatically detect whether encryption is enabled and, if it's not, it will
enable it by setting the password to 123. Backup encryption will be disabled at the
end of the acquisition process:

Figure 2.16 – The toolkit will show progress and debug information on screen

At the end, the toolkit will give you a summary of the acquisition process. The extracted
files can now be examined using the forensic tool of your choice.

We've seen how to perform logical acquisitions using two different tools. Keep in
mind that there are a variety of different tools that can perform this kind of
acquisition, including free tools. In the next section, we'll learn how to perform
a full filesystem acquisition.

Performing a filesystem acquisition 51

Performing a filesystem acquisition
In the first part of this chapter, we learned that a full filesystem acquisition is generally
the best way to extract the largest number of artifacts from an iOS device and that
this acquisition can be carried out by jailbreaking the device, exploiting the Checkm8
vulnerability, or by performing an agent-based acquisition.

We'll now put this into practice by performing a Checkm8 full filesystem acquisition using
Cellebrite UFED, which has a built-in Checkm8 solution. Then, we'll perform an agent-
based acquisition using Elcomsoft iOS Forensic Toolkit.

Both acquisitions provide the same result: an image of the entire filesystem. Checkm8
acquisitions can be considered forensically sound and represent the best option, although
newer devices are not compatible with this method. On the other hand, agent-based
acquisitions require you to install an application on the device, which will make some
minor changes to system log files, but this solution is compatible with newer devices, such
as the iPhone 12.

Checkm8 full filesystem acquisition using
Cellebrite UFED
Cellebrite UFED features a built-in solution to perform Checkm8 acquisitions, so the
entire process is made extremely easy by simply following the onscreen instructions:

1. The first step is to launch Cellebrite UFED and select Mobile device from the
main menu. Then, choose the device model from the search option or use AUTO
DETECT to detect it automatically. Keep in mind that you will need to use a USB-A
cable to perform the full filesystem acquisition.

52 Data Acquisition from iOS Devices

2. Select Advanced Logical and then choose the Full File System (checkm8) option.
The other options can be used to obtain a partial filesystem or a full filesystem
extraction from jailbroken devices:

Figure 2.17 – Choose the Full File System (checkm8) option

3. Next, the device must be powered off. Once it's off, you'll want to enter Recovery
mode and from there put the device in DFU mode. The onscreen instructions are
pretty accurate, but, basically, once the device is off, you should press and hold the
Home button while connecting the device. This will put the device in Recovery
mode. From there, press both the Power button and the Home button for 10
seconds and then release the Power button, while keeping the Home button pressed
for a few more seconds. This procedure may vary depending on the device model.
Once the device enters DFU mode, the Continue button will light up:

Performing a filesystem acquisition 53

Figure 2.18 – UFED will display instructions on how to enter Recovery and DFU modes

4. At this point, UFED will exploit the device by leveraging the Checkm8 vulnerability.
This could take a few minutes. The entire procedure is performed in the device's
volatile memory, so no changes will occur on the device itself, and it will boot back
to normal at the end of the acquisition process:

Figure 2.19 – Exploiting the device could take a few minutes

54 Data Acquisition from iOS Devices

5. Once the device has been successfully exploited, the acquisition stage will start, and
the device will display a progress indicator:

Figure 2.20 – Acquisition in process

6. The full filesystem will be imaged and archived in a DAR file, which is similar to
a TAR archive:

Figure 2.21 – The extraction will be archived in a DAR file

Performing a filesystem acquisition 55

When the acquisition process ends, the device will automatically reboot normally. The
resulting DAR archive can be analyzed by importing it into Cellebrite Physical Analyzer
or the tool of your choice.

Agent-based full filesystem acquisition
Elcomsoft iOS Forensic Toolkit is one of the few tools that supports agent-based
acquisitions. As this method requires sideloading an application (the agent) onto the
device, you'll need an Apple ID. On the Windows version, you'll need an Apple Developer
ID, while on macOS, you can use a traditional account:

1. To start, launch the toolkit and check that the device is correctly recognized:

Figure 2.22 – Elcomsoft iOS Forensic Toolkit home screen

56 Data Acquisition from iOS Devices

2. From the menu, choose option 1, which will install the agent on the device. You
will be asked to provide Apple ID credentials and you will have to pass two-factor
authentication. Then, the agent will be signed in with your Apple ID and installed
on the device:

Figure 2.23 – Installing the agent onto the device

3. Once the agent has been successfully installed, launch the application on the device.
Now, to extract the keychain, choose option 2 from the toolkit.

Performing a filesystem acquisition 57

4. When the keychain extraction process finishes, you can proceed to extract the
full filesystem. Generally, you will want to choose option 4, which will extract
the user partition:

Figure 2.24 – Acquiring the full filesystem using the agent

5. The filesystem image will be archived in a TAR file. When the process finishes,
choose option 5 to uninstall the agent.

That concludes our filesystem acquisition!

Both Checkm8-based acquisitions and agent-based acquisitions are a complete
breakthrough, as they allow forensically sound extractions of the entire filesystem,
including all files related to third-party apps. As you've learned, a full filesystem will
contain so much more data compared to a logical extraction. In the following chapters,
we'll delve into these files and learn how to analyze them to gain meaningful evidence.

58 Data Acquisition from iOS Devices

Summary
In this chapter, we learned the differences between acquisition methods and what kind
of data we can expect to find in an iOS extraction. We learned how the Checkm8 exploit
works, how this vulnerability can be used to gain access to a device's filesystem, and
its limits. Then, we discussed agent-based acquisitions and learned what iOS versions
support this acquisition.

Jailbreaks are a fascinating topic in the iOS world; we discussed two of the most popular
ones, checkra1n and unc0ver, and their compatibility. Then, we learned how to jailbreak a
device using checkra1n.

Finally, we learned how to perform a logical acquisition using Cellebrite UFED and
Elcomsoft iOS Forensic Toolkit, and we approached two different options to perform a full
filesystem acquisition.

Keep in mind that in this chapter, we focused on After First Unlock (AFU) acquisition
methods, so it's imperative that the examiner has full access to the device. Over the course
of the next chapters, we will look into Before First Unlock (BFU) acquisition methods to
understand what kind of artifacts we can find in locked devices.

In the next chapter, we will discuss forensic tools, which ones are most popular, and how
to use these to analyze extracted data.

In part two, you will learn where to find key artifacts and how to examine them to find
meaningful information. By the end of this part, you will know how to analyze user and
system data from a device.

This part of the book comprises the following chapters:

• Chapter 3, Using Forensic Tools

• Chapter 4, Working with Common iOS Artifacts

• Chapter 5, Pattern-of-Life Forensics

• Chapter 6, Dissecting Location Data

• Chapter 7, Analyzing Connectivity Data

• Chapter 8, Email and Messaging Forensics

• Chapter 9, Photo, Video, and Audio Forensics

• Chapter 10, Analyzing Third-Party Apps

• Chapter 11, Locked Devices, iTunes Backups, and Cloud Forensics

Section 2 –
iOS Data Analysis

3
Using Forensic Tools

In the previous chapter, we learned all about the different acquisition techniques and how
to use forensic tools to extract data from iOS devices. In this chapter, we will learn which
are the most popular tools for data analysis, and their features and limitations.

Although using forensic tools for data analysis is not strictly required since theoretically
it is possible to examine files manually, using these tools has many advantages. The most
evident benefit of using forensic tools compared to manually parsing artifacts is time: if
used correctly, these tools are huge time savers as they're programmed to automatically
search for relevant files, look for patterns, analyze known data structures, and extract
meaningful insights from common artifacts. Using the appropriate tools ensures that
precious artifacts are not missed, although the investigator should always validate the
output of such tools and know their limitations. There are no perfect forensic tools – every
tool has its flaws! Most tools allow investigators to examine third-party applications as
well as system apps, and can also be configured to automatically perform custom data
carving on such applications.

In this chapter, we will cover the following topics:

• Understanding forensic tools

• Working with Cellebrite Physical Analyzer

• Working with Magnet AXIOM

• Using open source tools

62 Using Forensic Tools

Understanding forensic tools
Once the iOS device and the evidence stored within it have been successfully seized,
preserved, and extracted through a forensically sound acquisition process, the next steps
involve processing and analyzing the extracted data.

Currently, there are a number of commercial tools available on the market that perform
data analysis, such as Cellebrite Physical Analyzer, Oxygen Forensic Detective, Magnet
AXIOM, Belkasoft Evidence Center, MSAB XRY, EnCase Forensic, and many others. In
this chapter, we'll work with two of these tools, Cellebrite Physical Analyzer and Magnet
AXIOM.

We've already seen how mobile forensics presents several additional challenges compared
to digital forensics, and one significant difference has to do with how data extracted
from iOS devices is analyzed; with mobile device forensics, using a single tool to process
and analyze the evidence is extremely risky, as one solution will not provide all the tools
that support all devices and all iOS versions. Generally speaking, forensic tools work by
parsing files of interest (such as SQLite databases, plists, and log files) and running a series
of plugins on these files that look for key evidence in predefined locations. What this
means is that more recent applications may not be supported because if there isn't a plugin
for a given app, forensic tools will not automatically display data for that application! No
one tool can process and analyze all artifacts from every mobile device.

To choose the best tools for your purpose, you need to know the following:

• Where the tool will search for data

• What a tool is doing to the extracted data

• How the tool will represent the data

For instance, iOS devices sometimes compress log files into archives to save space on disk.
If your tool does not automatically extract files from archives that are found in an iOS
extraction, you could be missing some key evidence. Make sure you understand exactly
what files your tool parses and what files it doesn't.

Tool validation
Once the investigator has assessed which tool is the best fit for a particular scenario, the
tool and its output should be validated before starting the examination process. Validating
a tool is the process of determining through testing that it performs in a certain way and
that the results are consistent.

Working with Cellebrite Physical Analyzer 63

In particular, the investigator should verify the following:

• The tool does not alter the data in any way.

• The data provided by the tool is consistent with what is displayed on the device.

• The data represented by the tool is consistent with what you find in the source file of
that particular piece of data.

• The results are consistent among different forensic tools.

Validation is increasingly important when dealing with unsupported third-party
applications or Unidentified Forensic Objects (UFOs), as some tools have some built-in
features that use heuristics to attempt data extraction from these artifacts, but sometimes
the results can be incomplete or inconsistent.

Tip
One of the most common ways to get to know your tools and validate their
output is by using them to analyze a known device, such as your personal
iPhone. Use your device to perform normal day-to-day activity and take notes.
Then, extract and analyze data from the device using several tools and check
that it gets reported correctly.

Although forensic tools will greatly aid the investigator by speeding up the entire process,
this software should not substitute the process of manually viewing and assessing the files
that were extracted in the acquisition process.

Working with Cellebrite Physical Analyzer
Cellebrite software is generally regarded as the golden standard for mobile forensics
among law enforcement and security organizations due to its powerful features, wide
device compatibility, frequent updates, and easy-to-use user interface. Their most popular
tools are Cellebrite Universal Forensic Extraction Device (Cellebrite UFED), which we
used in the previous chapter to acquire the device's filesystem, and Cellebrite Physical
Analyzer, which is used for data analysis and reporting.

We will now learn how to import the extracted data into Physical Analyzer and then we'll
go over some of the main features of this powerful tool.

64 Using Forensic Tools

Loading evidence and selective decoding
The first step in a Physical Analyzer examination is loading the evidence into the tool.
You can accomplish this by using the case wizard, which is a step-by-step procedure that
will guide you through the process and also show you some optional features that can be
enabled. One of these is selective decoding, which allows investigators to perform faster
parsing and analysis by selecting specific applications or specific categories that should
be parsed in addition to common system artifacts. This is especially useful when you're
dealing with devices that have dozens of installed applications, but you only need to parse
very specific artifacts that pertain to a few of these apps.

Let's see how this works:

1. From Physical Analyzer's menu, choose File | Open case to bring up the case
wizard.

2. The next step involves choosing which files to load depending on the type of
acquisition that was performed. If you acquired the device using Cellebrite UFED,
choose Add | Load extraction and select the UFDX or UFD file that was created by
Cellebrite UFED. If you used a different forensic tool and performed a filesystem
acquisition, choose Add | GreyKey and point it to the folder or archive where the
extracted data is stored. Finally, if you performed a logical acquisition, choose Add
| Common source | Backup and select the folder that contains your iTunes backup.
Then, click Next to continue:

Figure 3.1 – Open the case wizard and add the folder or file that contains your data

Working with Cellebrite Physical Analyzer 65

3. In the next screen, the case wizard will display a set of examination tools that can be
enabled by selecting their checkbox. Enabling parsing of archives can be useful to
recover data from log files that have been compressed and archived by iOS; however,
keep in mind that this will increase decoding time. In this example, we're going to
use selective decoding to speed up the decoding process, so enable this tool and
click on Examine data to start the process:

Figure 3.2 – The case wizard also allows you to enable specific examination tools

66 Using Forensic Tools

4. At this point, Physical Analyzer will scan for applications available on the device,
and when it's done scanning, a list will appear with several filtration options –
for example, from the Social networking category, we can choose to only parse
Telegram Messenger and WhatsApp Messenger by checking the boxes. When
you've finished, click Continue to start the decoding process:

Figure 3.3 – Choose which applications should be decoded

Working with Cellebrite Physical Analyzer 67

5. When the process finishes, the Extraction Summary pane will be displayed,
which shows some key data on the device and a list of all the artifacts divided
into categories:

Figure 3.4 – Extraction Summary

Now that we have loaded and decoded the data, we will see how to view the decoded data.

68 Using Forensic Tools

Viewing decoded data
Once the extraction has been loaded and Physical Analyzer has successfully decoded the
data, it's time to start digging into the artifacts to look for evidence.

One of the most useful features of this tool is that for every artifact, it will display a source
link that will give the investigator an immediate understanding of where that data was
found. For example, from Extraction Summary, take a look at the Device Info section:

Figure 3.5 – The Device Info section gives the investigator some key data on the device

On the left side, you will find several useful artifacts, such as Apple ID, the device Serial
number, and Time Zone. For each of these, on the right side of the screen, you will see
the source, represented as the name of the file where that data was found. You can validate
the output provided by the tool simply by clicking on the source file, which will open the
relevant file, allowing you to double-check whether the result is consistent with the file
contents.

Working with Cellebrite Physical Analyzer 69

When you're working on an examination and you want to quickly locate any artifact, you
can start by looking at the project tree; you can find it from the menu on the left side of
the screen by clicking on Analyzed Data. Within the project tree, you will find all the
categories of data that were decoded by Physical Analyzer, allowing you to quickly get
down to specific data without having to scroll through thousands of artifacts to find what
you need.

For example, if we're interested in data from Wi-Fi, we can select the Devices & Networks
category and then get more granular data by clicking on Wireless Networks:

Figure 3.6 – The project tree displays all decoded data grouped into categories

We have now successfully learned how to view the decoded data.

Using the AppGenie
Although Physical Analyzer does a pretty good job of decoding all sorts of artifacts from
extraction, it may happen that there are some applications that are not parsed at all, or
maybe data is only partially recovered. In such cases, using a built-in tool called the
AppGenie can help recover more data.

70 Using Forensic Tools

The AppGenie is a research tool that parses through third-party applications, extracting
additional data based on sophisticated heuristics. By running the AppGenie on unparsed
applications, the investigator can gain access to a lot more data, such as chats, contacts,
user accounts, logs, and locations.

Even though the AppGenie can be a great solution to quickly triage an app, it's important
to understand its limits; the results provided by this tool should not be trusted blindly!
The investigator should use the output provided by the AppGenie as a starting point to
conduct further manual carving by examining the source files.

Let's see how we can get more data using this tool:

1. From the extraction summary, click on the View all button from the application's
insights section:

Figure 3.7 – Physical Analyzer extraction summary

Working with Cellebrite Physical Analyzer 71

2. You will see a list of installed applications. Select the apps for which you require
more data and click on the Run AppGenie button at the bottom of the pane:

Figure 3.8 – A list of applications installed on the device

72 Using Forensic Tools

3. The following screen reminds you that the AppGenie is a research tool and that you
must validate the results by manually digging into the source files:

Figure 3.9 – A reminder that validation is required

4. The final screen gives you a summary of which apps were selected for additional
parsing. Click the Start button to make the App Genie do its magic:

Figure 3.10 – A summary of applications that should be parsed by the AppGenie

Working with Magnet AXIOM 73

5. Once the AppGenie is done, any extracted data will be added to the project tree in
the category called AppGenie Analyzed Data.

As you've seen in this brief introduction, Cellebrite Physical Analyzer makes browsing
through thousands of artifacts a straightforward task; all data is categorized and easily
accessible directly from the examination summary, and the AppGenie can help uncover
unparsed evidence.

An in-depth look at all Physical Analyzer's features is beyond the scope of this chapter,
so make sure you take the time to fully explore this tool and get familiar with all the rest
of its useful features, such as keyword searching, evidence tagging, Python scripts, and
built-in reporting capabilities.

Working with Magnet AXIOM
Magnet AXIOM is one of the most popular tools for digital forensics. It supports both
computer forensics and mobile forensics, with complete support for almost all Android
and iOS devices. The software has two modules, AXIOM Process and AXIOM Examine.
The first module is responsible for acquiring evidence from a device or loading an existing
extraction, and performs data parsing and decoding. When the decoding process is done,
you can use AXIOM Examine to review all recovered artifacts and analyze the data.

Loading evidence and on-the-fly processing
One of the key features of Magnet AXIOM is that it allows investigators to start analyzing
artifacts while the data is being processed. This is a life-saving feature in all those
circumstances where time is a critical factor and evidence needs to be reviewed as soon
as possible.

74 Using Forensic Tools

In the following example, we'll learn how to load an existing filesystem extraction from an
iOS device into AXIOM Process and how to use AXIOM Examine to locate key artifacts:

1. The first step in the examination is creating a new case within AXIOM Process.
Launch the application and fill in the case details. Then, click GO TO EVIDENCE
SOURCES:

Figure 3.11 – Fill in the case details

Working with Magnet AXIOM 75

2. The next step is selecting the evidence source. In this case, we're analyzing an iOS
device, so choose MOBILE and then IOS:

Figure 3.12 – Select the evidence source

3. Since we've already acquired the device in the previous chapter, select LOAD
EVIDENCE and then IMAGE, and locate the file that contains the extracted data:

Figure 3.13 – Choose the file or folder that contains the extraction

76 Using Forensic Tools

4. Once you've added all evidence sources to the case, click on GO TO PROCESSING
DETAILS to continue:

Figure 3.14 – The EVIDENCE SOURCES screen displays all data sources for the case

The PROCESSING DETAILS view allows the investigator to enable additional decoding
tools, such as any keywords that should be searched or archive parsing. To make sure you
get the richest possible dataset, you may want to enable the SEARCH ARCHIVES AND
MOBILE BACKUPS option, although this will require additional decoding time. If the
device contains third-party apps that aren't supported by Magnet AXIOM, you can enable
the Dynamic App Finder (DAF) and configure custom artifacts to parse unsupported
apps. Once you've configured the tools according to your preference, click on GO TO
ARTIFACT DETAILS to continue:

Working with Magnet AXIOM 77

Figure 3.15 – Enable additional parsing tools and utilities

78 Using Forensic Tools

5. Select the artifacts that should be included or excluded in the decoding process.
This can be useful to speed up the process when the investigator is only interested in
data from specific applications. Then, click on GO TO ANALYZE EVIDENCE:

Figure 3.16 – Choose which artifacts should be decoded

Working with Magnet AXIOM 79

6. Click on ANALYZE EVIDENCE to start decoding the data. AXIOM Examine
opens automatically and displays any evidence that is recovered:

Figure 3.17 – The Case dashboard screen

7. You can check the progress from the bottom-left part of the screen and, as new data
is recovered, clicking on LOAD NEW RESULTS will load the artifacts into AXIOM
Examine so that you can start analyzing the data right away.

8. When AXIOM Process is done, the scan summary will display the results of the
decoding process, including any exceptions that may have occurred.

80 Using Forensic Tools

Analyzing evidence with AXIOM Examine
The starting point for data analysis using AXIOM Examine is the case dashboard; from
this view, you can see information about your case and relevant tags and keywords, and
you can have a general idea of what artifacts were recovered by looking at the categories in
the Artifact Categories section.

In AXIOM Examine, you can analyze evidence in several different ways.

The following is a list of useful tasks that can help you make the most of this tool:

• Browse through all the evidence using the Artifacts explorer, which will display the
data grouped into categories. When you select an artifact, the DETAILS pane will
show you the source file where that data was found:

Figure 3.18 – The Artifacts explorer

Working with Magnet AXIOM 81

• Use the File System explorer to manually browse through files – for example, you
can use this feature to display the contents of plists and SQLite databases. You can
mark important evidence by adding tags and comments to an artifact.

• View and analyze connections between artifacts using the Connections explorer;
by default, AXIOM Process does not automatically build connections, so you'll have
to manually enable this feature from the menu within AXIOM Examine, choosing
Tools | Build connections. After connections are built, from the Artifacts explorer,
select the artifact that you want to view connections for and click the Connections
icon from the Details pane. The tool will automatically switch to the Connections
explorer view and display a visual map of any connection based on the artifact:

Figure 3.19 – The Connections explorer

82 Using Forensic Tools

• Review all artifacts generated in a specified timespan by building a timeline from
the Timeline explorer. This is useful if an investigator knows when a certain event
occurred and wants to see all the activity on the device at that moment:

Figure 3.20 – The Timeline explorer

When the examination is complete, Magnet AXIOM's built-in exporting wizard allows
the investigator to automatically generate a report; the exporting wizard will ask what
artifacts should be included in the report and what should be excluded, and data can be
exported in a number of different formats, including Excel, HTML, and PDF.

This completes our brief introduction to Magnet AXIOM!

Both Cellebrite Physical Analyzer and Magnet AXIOM have a lot more interesting
features, such as working with cloud forensics. We'll be looking into this topic later on in
the book.

Using open source tools 83

Using open source tools
This chapter would not be complete without mentioning some of the best open source iOS
forensic tools! The DFIR (Digital Forensics and Incident Response) community is one
of the most active and helpful communities out there, and these tools are the result of the
hard work and passion of security researchers, forensic examiners, and developers that
have shared their knowledge with the community.

Apollo
The Apple Pattern of Life Lazy Output'er (APOLLO) is a Python script written by
Sarah Edwards (you can find her on Twitter – @iamevltwin) that processes iOS and
macOS artifacts to extract pattern-of-life data and combines the result into a single SQLite
database or CSV file for viewing.

The script is based on a number of different modules (some of these have been written by
the DFIR community), and each of these runs one or more queries to extract specific data
from an iOS extraction. We'll be using this powerful tool extensively in Chapter 5, Pattern-
of-Life Forensics.

You can download APOLLO from the project's GitHub repository: https://github.
com/mac4n6/APOLLO.

iLEAPP
The iOS Logs, Events, And Plists Parser (iLEAPP) is a script written in Python 3
by Alexis Brignoni (Twitter – @AlexisBrignoni), which is a free alternative to
commercial forensic tools. This tool can parse full filesystem iOS extractions, parsing and
decoding almost every kind of artifact that you can find on an iOS device.

Personally, I find this is a great tool to be used in addition to commercial software, as it
can help validate your findings.

iLEAPP can be downloaded from https://github.com/abrignoni/iLEAPP.

iOS Triage
This tool is a Unix shell script written by Mattia Epifani (Twitter – @mattiaep) that can
be used to extract data from a jailbroken iOS device. This is a quick solution if you need to
triage a device, including devices that are in BFU state. We'll be using iOS Triage later on
in the book.

You can download this tool from GitHub: https://github.com/RealityNet/
ios_triage.

https://github.com/mac4n6/APOLLO
https://github.com/mac4n6/APOLLO
https://github.com/abrignoni/iLEAPP
https://github.com/RealityNet/ios_triage
https://github.com/RealityNet/ios_triage

84 Using Forensic Tools

Sysdiagnose
This is the result of research carried out by Mattia Epifani (@mattiaep), Adrian Leong,
and Heather Mahalik (@HeatherMahalik) on log files generated by iOS devices.

These Python scripts will parse log files and provide useful evidence that could be missed
by commercial forensic tools.

You can download the scripts from https://github.com/cheeky4n6monkey/
iOS_sysdiagnose_forensic_scripts.

Analyzing data with iLEAPP
Let's take a look at how iLEAPP works and what kind of evidence can be extracted by
using this tool.

Before installing iLEAPP, make sure that you have Python 3 installed on your system. The
first step is downloading the code from GitHub by cloning the repository. You can do this
by running the following command:

git clone https://github.com/abrignoni/iLEAPP.git

Then, we need to install the required packages:

cd iLEAPP

pip install -r requirements.txt

Now that everything is set, we can run iLEAPP. In this example, we're providing a ZIP
archive as the input file and we're exporting the report to the output folder:

python3 ileapp.py -t zip -i ../iphone_dump.zip -o output

As you can see, we're using the -t option to specify what kind of input is provided, the -i
option to specify the path to the input file, and the -o option to specify the path to the
output folder.

https://github.com/cheeky4n6monkey/iOS_sysdiagnose_forensic_scripts
https://github.com/cheeky4n6monkey/iOS_sysdiagnose_forensic_scripts

Using open source tools 85

Once iLEAPP is done processing, the results will be combined into an HTML report:

Figure 3.21 – The report generated by iLEAPP

The report will include all sorts of artifacts and useful evidence, including accounts data,
cellular data, locations, application data, device usage data, contacts, messaging, and
much, much more!

This open source software is such a powerful tool that I absolutely recommend you play
around with it to understand its full potential.

86 Using Forensic Tools

Summary
In this chapter, we learned what the most popular commercial forensic tools are and the
importance of validating results by using multiple tools, comparing their outputs, and
running validation tests before starting the examination.

Keep in mind that although these tools are extremely useful and make the investigator's
job a lot easier, the tool itself is not the evidence. The report is not the evidence either.
The evidence is the evidence, and it's the examiner's job to understand how that evidence
was created, what it represents, and what insights can be gained from the analysis of that
evidence. Forensic software definitely has a place, but it should not substitute manually
examining the artifacts. In other words, use these tools but don't blindly trust them, and
make sure you understand what is happening behind the scenes.

Further on in the chapter, we concentrated on two of these tools, Cellebrite Physical
Analyzer and Magnet AXIOM. We learned how to import data into these tools and how
to use the software's features – such as the AppGenie or the Connections explorer – to dig
deeper into the data and gain useful insights.

Finally, in the last part of this chapter, we discovered some useful open source scripts and
used iLEAPP to extract and analyze artifacts from a full filesystem extraction.

In the next chapter, we will discuss the iOS filesystem and we'll learn where to find core
iOS artifacts.

4
Working with
Common iOS

Artifacts
In previous chapters, we discussed in broad terms how the iOS operating system works
and the different phases of the mobile examination workflow. Then, we learned all about
different acquisition methods and how to extract the richest amount of data from a device.
In the third chapter, we looked at forensic tools and continued our examination process by
loading the data into the tool for analysis.

One of the most critical aspects of a mobile forensics investigation is validating your
findings. We've already discussed the importance of tool validation in earlier chapters,
but the process should be extended to ensure the integrity of the data collected and to
understand and explain the context of the data, as this is essential for presenting it as
evidence in court. This usually entails following the source file and manually viewing the
artifacts in their native format.

88 Working with Common iOS Artifacts

In this chapter, we first look at the most common types of artifacts found on an iOS device
and how you can view them in their native format. Then, we will dive deep into SQLite
databases to learn how they manage data storage internally and what options we have to
recover deleted records. Finally, we'll take a closer look at the filesystem to understand
where system artifacts are located, what insights we can gain by analyzing this data, and
where application-specific artifacts can be found.

In this chapter, we will cover the following topics:

• Understanding the importance of validation

• Working with iOS artifacts

• Locating common artifacts

Understanding the importance of validation
In Chapter 3, Using Forensic Tools, we learned about some of the features of software such
as Cellebrite Physical Analyzer and Magnet AXIOM, and gained a better understanding
of what data we can expect to see analyzed by these tools.

You may be wondering why an examiner would invest time in learning how to manually
analyze data found on a device when these tools do all the hard work for you. Well,
for starters, while this software is an essential item in the investigator's toolbox, the
investigator should also understand the limitations of these tools and how to deal with
artifacts that are not automatically parsed; while forensic tools claim to support a variety
of different apps and artifacts, this does not mean that the products can actually parse
all of the data that pertains to a specific application that is being examined. With the rate
at which mobile apps are updated, it is quite common for a forensic tool to not support
a recently updated application or, in some cases, only partially support it by providing
some but not all of the available data. In such situations, the investigator must resort to
manually examining the source file in its native format.

Another reason an investigator might want to look at the source file of an artifact is to
validate their findings; even if a forensic tool has produced an appreciable output, it is
important to cross-reference the data to the source files to understand the context of that
data. For example, by analyzing the tables in an SQLite database, the investigator can
understand not only what data is stored but also how that data is stored on the device, and
how the operating system logs a particular event, such as an incoming phone call, text
message, or notification.

Working with iOS artifacts 89

If some key artifacts are found during the examination process that are fundamental to
the overall investigation, the examiner should be prepared to answer questions such as
the following:

• How did that data get there?

• What does that data tell us when we put it in context?

• Was that artifact the result of user activity or was it generated by the operating system?

• How did it interact with other data found on the device?

The answer to these questions can often lie in the source file of the artifact, so learning
how to manually analyze such files is a must for the person responsible for the
examination process of an iOS device.

The importance of validation cannot be stressed enough; using a validated methodology
to examine a device, making sure tools are working correctly by validating their output,
and validating your findings by diving deep into the source files to understand the context
of the data can have a huge impact on the final outcome of an investigation. In some cases,
this can be the difference between someone losing their job or not, or, in extreme cases,
the difference between them going to jail or not.

Before we discuss where common artifacts are located on an iOS device, in the next
section we will learn how to manually work with the most common file types you'll
encounter in a typical examination.

Working with iOS artifacts
Generally speaking, the artifacts that can be found on an iOS device can be grouped into
one of the following categories:

• SQLite databases

• Property lists

• Protocol buffers

• XML files

• Log files

While the last two files don't pose any kind of concern as they are essentially text files and,
as such, can be viewed with pretty much any text editor, the others may be (and often are)
stored in binary format, so they require specific tools or libraries to parse through the data.

90 Working with Common iOS Artifacts

Introducing SQLite
Almost every application on an iOS device, including system ones like Messages,
Contacts, or Email, needs a place to store data for the long term. This is achieved by
using SQLite, which is an open source, small, self-contained relational database. SQLite
databases can be recognized by the .sqlite or .sqlite3 file extensions, although
some databases are given the .db extension, or other extensions as well.

The reason why SQLite is so popular among mobile devices is due to its simple
architecture and great performance. The following are some of its features:

• SQLite is self-contained: The entire database is contained within a single file
that integrates directly with applications. Its serverless architecture means
that the database works as a standalone file, as opposed to the traditional client-
server protocol.

• SQLite is cross-platform: The database resides in a single, cross-platform file that
can be accessed by all operating systems supported by SQLite, including Windows,
macOS, Linux, Android, iOS, BSD, Solaris, and so on.

• SQLite is fully ACID-compliant: This allows safe access to multiple applications or
threads. It also supports most of the SQL query language, which is the main means
of interacting with nearly all modern relational database systems.

Now that we've seen SQLite's features, let's take a look at how it stores data.

Tables, columns, and rows
The basic concepts of an SQLite database should be easy to visualize – a database contains
one or more tables, which each contain data that is organized into columns and rows. A
column represents a single data element, such as a phone number or address, while a row
represents a set of values, one for each column.

SQLite supports five different data types:

• INTEGER

• TEXT

• REAL

• BLOB

• NULL

Working with iOS artifacts 91

The first three types are self-explanatory. The Binary Large Object (BLOB) data type
preserves any input exactly as is, without casting it as a certain type; BLOB data types are
commonly used to store complex binary data structures such as property lists or protocol
buffers in an SQLite record. The NULL data type simply stores an empty value.

To retrieve data from a database, you run a query, which is a set of logical instructions
written in SQL language that parses through a given table to extract the data you want.
The result of the query is actually represented as another table, as you can see in the
following screenshot.

To understand what a query looks like, let's see a simple example. The following query
extracts the last five messages from the sms.db database:

SELECT ROWID, text FROM message

ORDER BY ROWID DESC

LIMIT 5;

The output can be seen in the following screenshot:

Figure 4.1 – The result of a query displayed in DB Browser for SQLite

92 Working with Common iOS Artifacts

Without going into too much detail, we will focus on this query for a moment to
understand the basics of SQL language. Obviously, if you're doing a forensic examination
of an SQLite database, you do not want to modify the data in any way. Therefore, all
queries will probably start with the SELECT clause, which indicates that we want to read
data from a table.

On the first line, we select which columns to include in the result (ROWID and text)
and the name of the table – in this case, the message table. The second line of the query
indicates the order in which the results should be displayed. In the example table, each
SMS message is identified by a progressive ROWID column, so to display the most recent
messages, we're ordering the results in descending order based on this column. As we're
only interested in five messages, we use the LIMIT command to indicate how many rows
should be displayed.

Tip
If you're new to SQL language, you can learn how to write the most common
types of queries by visiting the SQLite website at https://www.sqlite.
org/lang.html.

As a forensic examiner, the queries you run usually entail filtering and searching through
the data, so you may want to look into commands such as CASE, WHEN, and WHERE. We'll
see more complex queries over the course of the chapter.

Running SQL queries
Most forensic tools come with a built-in database viewer that allows the investigator to
view the entire database and run queries directly within the tool itself; there are, however,
other options:

• The SQLite command-line utility, which can be downloaded from http://www.
sqlite.org, allows direct interaction with the database from the command line.

• Other free tools, such as DB Browser for SQLite, allow the user to view the
database through a Graphical User Interface (GUI) and run queries on it. DB
Browser for SQLite can be downloaded from https://sqlitebrowser.org.

The investigator should be familiar with the tools used to access the database directly, as
these will prove to be huge timesavers when the scope of the examination is limited to one
or more SQLite databases. Analyzing these databases with forensic tools such as Cellebrite
Physical Analyzer or Magnet AXIOM results in the need to load and parse the entire
extraction into memory; this can be very time-consuming, depending on the size of the
data extracted.

https://www.sqlite.org/lang.html
https://www.sqlite.org/lang.html
http://www.sqlite.org
http://www.sqlite.org
https://sqlitebrowser.org

Working with iOS artifacts 93

Using the SQLite command-line tool
sqlite3 is a command-line utility that is part of the SQLite library. macOS and most
Linux distributions have it already installed, while Windows users can download the
executable from SQLite's website, which is listed in the preceding section.

To open an SQLite database from the command line, just type the following:

sqlite3 filename.db

If a database with the specified name doesn't exist, SQLite will create it for you. Once
you've opened a database, a SQL prompt will be displayed, where you can run queries
and commands. There are a number of built-in commands you can issue to obtain basic
information on the database and its tables.

If you're not familiar with the database layout, you can list all the tables in it by running
the .tables command:

sqlite> .tables

attachment message

chat message_attachment_join

chat_handle_join message_processing_task

chat_message_join sync_deleted_attachments

deleted_messages sync_deleted_chats

If you're interested in a specific table, type .schema followed by the name of the table to
display the columns and data types of the table:

sqlite> .schema handle

CREATE TABLE handle (ROWID INTEGER PRIMARY KEY AUTOINCREMENT
UNIQUE, id TEXT NOT NULL, country TEXT, service TEXT NOT NULL);

By looking at the column names and types, you should be able to get a basic
understanding of what data is stored in the table. In this example, every row in the
handle table has an auto-incrementing ROWID column and three columns of TEXT type:
id, country, and service.

If you want to retrieve data from the table, you use a SELECT query:

SELECT * FROM handle;

When you are finished, type .exit or .quit to terminate the SQLite session.

94 Working with Common iOS Artifacts

Pages, vacuuming, and write-ahead logs
One of the features of SQLite that makes it so interesting to forensic examiners is the
possibility of recovering deleted records from a database. Depending on the scope of
the database, this could mean recovering deleted text messages, browser history, or
logs relating to device activity. To have a better understanding of how data recovery is
possible, we need to take a step back and learn how SQLite manages write and delete
operations under the hood.

We've already learned that, from a logical point of view, the data in a database is organized
into tables that each contain columns and rows. This is a high-level abstraction layer that
allows users to interact with a database with a simple data model that is easy to visualize,
such as columns and rows; however, at a lower level, the SQLite library actually organizes
data differently on the filesystem, storing data into pages. Pages are similar to blocks in
a filesystem, and their purpose is to store data in binary format. Each page in an SQLite
database can have a variable size, with the default size being 4096 bytes, and each page has a
distinct number. The first page contains a 100-byte header, which can be analyzed by using a
hex viewer, such as the hexdump command-line utility available on macOS and Linux.

For example, to view the header from an SQLite database called sms.db, we would
execute the following command:

hexdump -n 100 -C sms.db

The -n argument specifies the number of bytes that should be displayed. As SQLite has
a fixed-size header, we're only interested in the first 100 bytes. The -C argument tells the
hexdump utility to also display data in string format:

Figure 4.2 – The output from the hexdump command

Working with iOS artifacts 95

As you can see, the first 16 bytes contain the SQLite 3 format string. You can parse the rest
of the header by using the following table as a reference:

Figure 4.3 – The SQLite database header reference

To represent a table along with its data, SQLite organizes pages using a balanced tree
(B-tree) data structure, which is a highly efficient way of storing data. Pages that actually
contain data, also called active pages, are assigned to a node that serves the function of
connecting pages to each other.

Active pages in the file are further divided into cells, which are segments of a page that
contain the data for every row in the database. When new cells are added, SQLite will
attempt to place them at the bottom of the page. The free space within the page before
the first cell is called unallocated space. From a forensic viewpoint, unallocated space
is of great interest, as it may be empty, but it may also contain previously deleted data or
fragments of previously used pages.

When data is removed from the database, the corresponding cell or page is not actually
deleted but merely marked as deleted. Pages that have been marked for deletion are called
free pages, and SQLite manages these by adding them to another data structure, the free-
list. Deleting individual records from a database creates gaps in a page; these spaces are
called free blocks and are tracked by SQLite by adding them to a linked list.

96 Working with Common iOS Artifacts

As you can see from the previous table, the database header at offset 32 tells us the
number of the first page in the free-list, while the total number of free pages can be read
by looking at the value at offset 36. Every page in a database also has an 8 or 12-byte
header, depending on the type of page. The following table illustrates the format of the
page header:

Figure 4.4 – The SQLite page header reference

With all this information in mind, we could manually parse through the file with a hex
viewer and look out for free pages that contain data that was deleted from the database.
Thankfully, there are tools that automate this task!

Vacuuming
You can confirm the fact that SQLite retains deleted pages by checking that the database
file size does not change when data is removed. As a result of this behavior, under normal
circumstances, the file can only grow in size as new data is written to the database.
Additionally, as new records are added and deleted from the database, the data can
become fragmented because free pages will be scattered and mixed all across the file. This
means that the actual parts of a database that hold a particular table will not be stored
contiguously within the file, which affects performance.

Working with iOS artifacts 97

The following diagram illustrates what happens when data is written to and deleted from
the database, resulting in a fragmented file:

Figure 4.5 – Pages in a fragmented SQLite database

The process of vacuuming an SQLite database solves these problems by reading the
logical data from the database (tables, columns, and rows) and writing it to a temporary
file, ignoring free pages. As a result of this process, the database file is rebuilt from
scratch, active pages are repacked, and data within the file is defragmented. Once the
process is complete, the contents of the temporary file will be copied back into the
original database, overwriting it.

The following diagram shows the same database after running the VACUUM command;
the records stored in the database are obviously unchanged, but now the active pages are
stored contiguously and the free pages are not present:

Figure 4.6 – Pages in an SQLite database after the vacuuming process

98 Working with Common iOS Artifacts

It should be clear that recovering deleted records from a database is nearly impossible
once the vacuuming process is complete. Research has shown that iOS periodically runs
the VACUUM command for most SQLite databases. At the time of writing, however, it is
not clear exactly when this happens, as it seems to depend heavily on the device model
and iOS version.

Write-ahead logging
Up to this point, we have focused on analyzing the main database file to understand how
the data is stored in that file and where to look for deleted records. However, there are
other files that are of interest from a forensic perspective that should not be overlooked,
such as SQLite temporary files. The most common type of temporary file you will find on
an iOS device is a journaling file called the Write-Ahead Log (WAL).

WAL files can be easily identified by their filename, since the -wal string is appended to the
name of the database. So, for example, if we are working on an SQLite database called sms.
db, the WAL file will be called sms.db-wal, and it will be created in the same directory
as the main database file. These temporary files will not always be present, as only databases
that have their journaling mode set to WAL will use the write-ahead log method.

From the research that has been carried out, it's safe to say that most databases on an
iOS device have WAL mode enabled. If this is the case, when data is added, modified, or
deleted, the transaction is stored in the WAL file rather than directly in the main SQLite
database. Similarly, when reading data from the database, the SQLite engine determines
where the most recent version of a particular record is stored and reads it from the
appropriate file:

Figure 4.7 – New records added to the database are appended to the WAL file

Working with iOS artifacts 99

There are many reasons why an application would want to enable WAL mode in its
database. The most important reason is performance; pages are written to the WAL
file in sequential order, and every change to the database results in a single disk write.
Additionally, because of the separate files, an application using multiple threads will be
able to read from the database while writing to it.

At some point in time, the data in the WAL file will have to be transferred back into
the main database. This process is called a checkpoint. Typically, SQLite automatically
performs a checkpoint when the WAL file reaches a certain size (by default, this is 1,000
pages) or when the last database connection is closed:

Figure 4.8 – A checkpoint transfers data from the WAL file back into the main database

Tip
It's important to know that SQLite does an automatic checkpoint when all
connections to the database have been closed cleanly. So, if you close a database
with WAL enabled when using a tool like DB Viewer, the contents of the WAL
file will be transferred to the main database and the WAL file will be removed.

100 Working with Common iOS Artifacts

As WAL files grow in size, it's quite common for them to become larger than the main
database itself, so these should definitely not be overlooked during the examination
process, as they may contain huge amounts of data.

The structure of these files is fairly simple – a WAL file consists of a 32-byte header
followed by zero or more frames. Each frame records the revised contents of a single page
from the database file. The following table shows what data we can find in the file header:

Figure 4.9 – The WAL file header

Each frame within a WAL file contains a 24-byte frame header, followed by the new or
altered database page. The size of the page can be determined by looking at the file header.
The same page can appear multiple times in the WAL file because every time a page needs
to be updated, the latest version is read (either from the WAL or main database file) and
then changes are appended to the end of the WAL file.

Figure 4.10 shows the format of the frame header:

Figure 4.10 – The WAL frame header

It should be noted that the only way to view all the data present in a WAL file is to either
manually analyze the frames with a hex viewer or use a forensic tool with built-in support
for SQLite data recovery. Using non-forensic tools (such as the SQLite command-line tool
or DB Browser) will not display all the data but instead display either the live state of the
database or the state of the database before the first transaction in the WAL file.

Working with iOS artifacts 101

Recovering deleted data
Now that we've seen how SQLite manages data storage behind the scenes, we can focus
on attempting recovery of deleted records. Building on what we learned in the previous
section, deleted data may be found in any of the following locations:

• Unallocated space

• Free pages

• Free blocks

• WAL files

We'll start by manually analyzing the database and then we'll see some automated tools
that will do the job for us.

Analyzing the database with a hex viewer
The most common method to locate deleted data in an SQLite database is to view its
contents using a hex editor. Simply skimming through the file with a tool such as Hex Fiend
or HxD will display all the data stored in it, including unallocated space and free pages:

Figure 4.11 – Using a hex viewer to display the contents of an SQLite file

By analyzing the database header to understand the page size and location of free pages
and free blocks, the examiner can use the tool of their choice to highlight a specific page
in the file by specifying the offset and length, effectively isolating the page from the rest of
the data. The page can then be analyzed by displaying its contents in string format.

102 Working with Common iOS Artifacts

The following steps describe the process of manually parsing through pages of an
SQLite database:

1. Read the database header and identify the page size and number of pages.
2. Work out the offset location of each page.
3. Analyze the page header.
4. If it's an active page, search for any useful evidence in unallocated space or free

blocks. If it's a free page, analyze the entire page.
5. Continue the process for each page in the database.

The same principles apply to WAL files; as the file format is well documented, the
examiner can open the WAL using a hex viewer, calculate the offset of each frame, isolate
each individual frame, and view the data by converting it to a UTF-8 string to identify any
readable strings.

As an example, we're going to create a new database named test.db that contains a
single table called Fruits. Then, we'll populate the database with a few records, delete a
row of data, and analyze the file with a hex viewer. For simplicity, the database will not use
write-ahead logging.

You can create the database using your software of choice or the sqlite3 command-line
tool. Then, run the following queries:

CREATE TABLE "Fruits" (

 "ROWID" INTEGER,

 "Fruit" TEXT,

 PRIMARY KEY("ROWID" AUTOINCREMENT)

);

INSERT INTO "Fruits" VALUES (1,'Apple');

INSERT INTO "Fruits" VALUES (2,'Peach');

INSERT INTO "Fruits" VALUES (3,'Orange');

INSERT INTO "Fruits" VALUES (4,'Banana');

DELETE FROM Fruits WHERE ROWID == 1;

Working with iOS artifacts 103

As you can see from the following screenshot, the table now contains three rows,
as expected:

Figure 4.12 – The table contains three rows of data

The first step in our examination is to open the file with a hex viewer and analyze the
100-byte header to extract any useful information from the database:

Figure 4.13 – The SQLite database header

The previous screenshot shows three highlighted data points in the header:

• At offset 16, we can see the page size, which is 0x1000 or 4096 in decimal format.

• At offset 28, we find the number of pages, which is 3.

• At offset 36, the number of free pages is 0.

104 Working with Common iOS Artifacts

Since there are no free pages, our examination will include analysis of active pages,
unallocated space, and free blocks. Now that we know the page size and the number of
pages, we can easily calculate the offset of each page:

Table 4.1 – The decimal offset for each page

We will focus on the analysis of page 2. To isolate it from the rest of the data, make a new
selection starting at offset 4096 and spanning for 4096 bytes, and copy the data to a new
window in your editor. From now on, the offsets will be relative to the page:

Figure 4.14 – The page header

Now that we have loaded the second page into our hex editor, the next step involves
examining the page header:

• At offset 01, we can read the location of the first free block, which is 0x0FF6 or
4086 in decimal format.

• The value at offset 04 indicates the number of active cells on the page, 3.

• By looking at offset 05, we can find the location of the first non-empty data cell,
which is 0x0FD6 or 4054.

• Finally, the space between the header and the first data cell is unallocated space.

Working with iOS artifacts 105

With all this information in mind, we can highlight the free block that starts at offset
4086 and ends at the bottom of the page; the right pane of the hex viewer displays the
data as a UTF-8 string:

Figure 4.15 – The free block shows previously deleted data

As you can see, the record named Apple that was previously deleted from the database is
still in the file, on the right in the free block of the second page.

Carving for strings
Data carving is the process of searching for particular strings or bytes within a file; the
examiner first determines a string or pattern to search for and then, using a hex viewer or
a command-line tool, initiates a search across a file for that string or pattern. This process
is a great alternative to manually parsing through an SQLite database, as it allows the
investigator to instantly verify whether a given record can be found in the file, including
any locations where deleted data is normally hidden.

The strings tool is a command-line utility that performs string carving in a binary
file and prints the result to the screen. Displaying all the strings that can be found in an
SQLite database is as simple as running the following command:

strings sms.db

This tool can be combined with other commands, such as grep, to search for a particular
string or pattern. The following command will search for the Apple word in the database
we used for the previous example:

strings test.db | grep Apple

Apple

106 Working with Common iOS Artifacts

As you can see, the Apple string was printed to screen, and this confirms that it was
found in the SQLite database. This simple tool can be a life-saving hack to show all the
strings that are stored in a database, including deleted data!

Recovering deleted records using FQLite
The task of manually recovering deleted data from an SQLite database can be a daunting
process; fortunately, most commercial forensic tools have this feature built in, but there
are other options too. At the time of writing, FQLite is probably the most complete open
source SQLite recovery tool, for the following reasons:

• It's written in Java, so you can run it from any OS.

• It supports the recovery of deleted records from all database pages, including free
blocks and unallocated space.

• It has built-in support for WAL files.

• Recovered records can be exported in CSV format.

To download FQLite, visit https://www.staff.hs-mittweida.de/~pawlaszc/
fqlite/ or head over to the GitHub repository that is located at https://github.
com/pawlaszczyk/fqlite.

We will now briefly go through the process of recovering deleted data from the sms.db
SQLite database:

1. Launch FQLite and select the database from which recovery should be attempted by
going to File | Open Database.

2. FQLite will now process the file and analyze the database, searching for deleted
records. You can follow the progress by looking at the log panel at the bottom
of the screen.

3. Once FQLite is done, from the left panel, choose the database or WAL file you want
to examine.

https://www.staff.hs-mittweida.de/~pawlaszc/fqlite/
https://www.staff.hs-mittweida.de/~pawlaszc/fqlite/
https://github.com/pawlaszczyk/fqlite
https://github.com/pawlaszczyk/fqlite

Working with iOS artifacts 107

4. FQLite will display a table with all the data that was found in the database, including
deleted records:

Figure 4.16 – FQLite recovers deleted records from an SQLite database

By now, you should have a good understanding of how SQLite works, how an investigator
can examine a database through the command-line tool, and which are the most common
techniques for data recovery. We'll now take a step forward and look at another popular
data structure.

108 Working with Common iOS Artifacts

Working with property lists
Property lists, commonly referred to as plists, are one of the favorite data structures used
in iOS devices. They are used to store, organize, and access various types of data in an
efficient manner, such as device configurations and user settings.

In a full filesystem acquisition, we find dozens of configuration files stored as plists
in /private/var/mobile/Library/Preferences/, such as com.apple.
DictionaryServices.plist, as shown here:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>DCSAssetPreferenceKeyDownloadedDictionaries</key>

 <array>

 <string>Apple Dictionary.dictionary</string>

 <string>Italian.dictionary</string>

 <string>Italian - English.dictionary</string>

 </array>

</dict>

</plist>

plists can be stored in two different formats:

• An XML-based format

• A binary-encoded format, also known as Binary-PLIST (BPLIST)

While the XML-encoded plist can be easily displayed with any text editor, the binary-
encoded format cannot be displayed in its native format but must be converted to XML.
We can do this by using the plutil tool, which is already installed on macOS. In other
OSes, the tool will be available after installing iTunes.

To convert a bplist into an XML-encoded plist, run the following command:

plutil -convert xml1 filename.plist

Working with iOS artifacts 109

In the previous part of the chapter, we learned that SQLite databases can also contain
BLOBs, which are records of binary data. It's quite common on iOS devices to see bplists
stored inside BLOBs; in this scenario, the examiner will have to export the BLOB to a file in
binary format and then convert the bplist into an XML-encoded file using the plutil tool.

Let's see how this works.

The following screenshot shows the applicationState.db SQLite database using
DB Browser. As you can see, the kvs table has a column called value, which contains
BLOBs of binary data:

Figure 4.17 – A SQLite database containing BLOBs of binary data

110 Working with Common iOS Artifacts

DB Browser allows us to view the contents of the BLOB in a hex viewer. Looking at the
first few bytes, we see the bplist00 string, so we now know for sure that the BLOB
contains a bplist:

Figure 4.18 – The hex viewer shows the bplist in binary format

Now, select the Export to File icon and save the BLOB into a file. In this example, we're
calling the file data.plist.

Finally, we can convert the exported bplist to a plist by running the following command:

plutil -convert xml1 data.plist

We can now examine the plist with an editor or any text viewer.

Working with protocol buffers
Protocol buffers (protbufs) are a language-agnostic method developed by Google to
serialize data structures to binary format and are sometimes used as an alternative to XML
files or plists.

Locating common artifacts 111

Although Protobufs are not as common on iOS devices, there are still some apps that use
them to store data so an investigator should have at least a basic understanding of how to
work with these files.

As protobufs are stored in binary format, they aren't human-readable; the protoc
command-line tool allows you to display the contents of the file and gives you a general
idea of how the data is structured.

Tip
The protoc tool is part of the protocol buffers package and can be
downloaded from the GitHub repository located at https://github.
com/protocolbuffers/protobuf.

Once the protoc tool has been installed, the contents of a protobuf can be printed to the
screen by running the following command:

protoc --decode_raw < [protobuf_blob_file]

Examples of applications that make use of protocol buffers include Apple Notes, Apple
Maps, and the Spotify application.

Now that we have a better understanding of what artifacts look like and how these can be
manually analyzed, the next section will provide an exhaustive list of the most common
evidence locations on iOS devices and what insights we can expect to gain.

Locating common artifacts
Application-related artifacts are essential for an iOS investigation, but device settings, logs,
and user-generated content are also important. In this final section of the chapter, we'll
look into some common locations within the iOS filesystem that the examiner can quickly
review to gather more information:

• The starting point for any iOS examination will most likely be /private/
var/mobile/Library/, as this folder contains artifacts that relate to device
information as well as data pertaining to the user's iCloud account. Table 4.2
illustrates some of the files that may be of interest.

• /private/var/mobile/Library/Preferences/ contains device
configuration files and user-defined settings, such as language, device name, time
settings, and so on. Most of the artifacts will be plists, either in XML or binary format.

https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf

112 Working with Common iOS Artifacts

• Artifacts relating to the SIM card such as the phone number, IMEI, and network
carrier can be found by analyzing the plists located at /private/var/
wireless/Library/Preferences/.

• /private/var/preferences/SystemConfiguration/ contains cellular
information and network settings, including WiFi and VPN data.

The following table shows some of the most common device-related artifacts. All paths are
relative to /private/var/:

Table 4.2 – Common iOS device artifacts

Locating common artifacts 113

Now that we know where to look out for settings and logs, we'll take a quick look at where
to find data generated by the user, such as messages or calls. Table 4.3 illustrates some of
the most popular files. As always, the paths are relative to /private/var/:

Table 4.3 – Common iOS user artifacts

It's important to understand that these tables only include some of the most popular
artifacts, but there are many, many more files that could be of interest for the investigation.
The examiner should always take an in-depth look at the entire filesystem to gain all
available insights from the data.

114 Working with Common iOS Artifacts

Summary
In this chapter, we learned which are the most common types of artifacts found on an iOS
device and how to analyze these files.

First, we introduced databases and learned how SQLite organizes data into tables,
columns, and rows. Then, we took a deep dive into SQLite's internal architecture to
understand how records are organized at a lower level and where deleted records can
be found. We discussed possible options to attempt the recovery of deleted data, such as
manually analyzing the database through a hex viewer or using tools such as FQLite.

Further on in the chapter, we talked about property lists and protocol buffers, which can
also be found on iOS devices in XML or binary format. To be readable, these files first
need to be decoded.

Finally, in the last part of the chapter, we outlined some common locations where
artifacts can be found and listed some essential files that should be considered in every
investigation. In the next chapter, we will discuss pattern-of-life forensics.

5
Pattern-of-Life

Forensics
In the previous chapter, we learned all about different kinds of artifacts that can be found
on iOS devices, such as SQLite databases and plists, and how to manually analyze these
files. In this chapter, we will use this knowledge to work with some of the most interesting
databases from a forensics perspective, such as the KnowledgeC database, which is the
go-to solution for pattern-of-life forensics.

Pattern-of-life data is all about the habits that the device owner carries out in their day-to-
day life. When it comes to smartphones, this includes what apps have been used at any
given point in time and for how long, when the device was unlocked, what the battery
temperature was, and what webpage the user was browsing.

We'll start the chapter by defining pattern-of-life forensics to get a better understanding of
what kind of data we may encounter in an iOS device investigation. We will then discuss
timestamps and how to convert them between different time zones. Then, we will take
an in-depth look at KnowledgeC, power logs, and device events, and we will learn how
to identify user interaction. Finally, we will introduce Apollo, an open source tool that
greatly simplifies the process of locating and reviewing pattern-of-life artifacts.

116 Pattern-of-Life Forensics

In this chapter, we will cover the following topics:

• Introducing pattern-of-life forensics

• Working with timestamps

• Logs, events, and user interaction

• Introducing Apollo

Introducing pattern-of-life forensics
If you have never had the opportunity to take a close look at an iOS device's pattern-of-life
data, you'll likely be surprised by the amount and variety of data that is collected, stored,
and processed during normal smartphone use. Typically, this data is used by the operating
system to provide customized recommendations to the user, such as Siri's suggestions.

What exactly is pattern-of-life forensics? This data is all about user behavior and device
usage, and it allows the investigator to answer questions such as the following:

• What has the user been using the device for?

• What have they accessed?

• Who have they communicated with?

From a forensic perspective, analyzing pattern-of-life data is extremely useful, not only to
identify all activities performed on the device in a given period of time but also to build
a profile of the device owner; by analyzing the data collected by iOS, the investigator will
gain a deep understanding of the owner's habits, such as which apps are used when the
user wakes up, which Wi-Fi networks the device connects to most often, web history, and
notifications. Building a profile of the activity that can be considered normal allows the
investigator to instantly detect patterns of abnormal behavior that may be of interest to
the investigation.

Surprisingly, pattern-of-life data gets very little attention from the forensic community,
mostly because of the challenges in obtaining the relevant SQLite databases from the
device; this data is not accessible during normal use of the device and can only be accessed
through a full filesystem acquisition. Clearly, this limits the range of devices from which
this kind of data can be extracted, but the checkm8 exploit and other techniques such as
agent-based acquisitions that rely on public software vulnerabilities allow investigators to
access user activity and behavior from most iOS devices.

Introducing pattern-of-life forensics 117

Meaningful SQLite databases
The following is a list of the most common databases relevant to pattern-of-life forensics.
We will take an in-depth look at each of these later on in the book:

• The primary source for user and device activity is the KnowledgeC.db SQLite
database, which can be found on both macOS and iOS devices. On iOS, it is located
at /private/var/mobile/Library/CoreDuet/Knowledge/ and can be
accessed only through a full filesystem acquisition. This database typically contains
hundreds of thousands of records pertaining to device events and user activity.

• The interactionC.db SQLite database keeps track of recent interactions
between the device owner and their contacts, such as SMS messages or calls. It's
not exactly clear what the retention period is for this database, as the data is not
consistent among different devices, but generally speaking, an investigator will find
entries for the last six months. Although interactionC.db does not contain
the actual contents of the conversations, it contains metadata that can be correlated
with other artifacts. The database can be found at /private/var/mobile/
Library/CoreDuet/People/.

• The CurrentPowerlog.PLSQL file, located at /private/var/containers/
Shared/SystemGroup/UUID/Library/BatteryLife/, tracks data related
to battery life, such as usage and temperature.

• Another interesting database that can help an investigator understand what
processes were running on a device at a certain point in time is the DataUsage.
sqlite database, which is located at /private/var/wireless/Library/
Databases/. This database stores network usage stats for every process.

• One of the most important subjects pertaining to pattern-of-life forensics is location
data; on iOS, there is more than one file that tracks where a user is located at any
given point in time, showing which places a user visits more often, such as the
cache_encrypted.db database located at /private/var/root/Library/
Caches/locationd/ or the consolidated.db database. Every database
contains data with different granularity and levels of detail, and we'll look into this
topic thoroughly in the next chapter.

118 Pattern-of-Life Forensics

Now that we've learned which are the most common sources of pattern-of-life data,
you may be wondering what exactly we can expect to see tracked in these databases.
The following screenshot shows some of the most interesting pattern-of-life artifacts by
viewing them in Cellebrite Physical Analyzer:

Figure 5.1 – Device events in Cellebrite Physical Analyzer

As you can see, KnowledgeC.db records every time the device was plugged in,
unplugged, locked and unlocked, when the display was activated, if the speakers were on
or off, and so on.

Before we dive deep into analyzing this database, we'll take a look at how iOS databases
and log files represent the date and time of a specific event and how to convert between
different timestamp formats.

Working with timestamps 119

Working with timestamps
Before jumping into the analysis of SQLite databases, it's important to understand how
iOS stores date and time records, and this is achieved by using timestamps. A timestamp
is a numerical representation of a date and time, usually in the form of the number of
seconds elapsed since a certain point in time called an epoch.

Generally speaking, timestamps found on iOS devices are presented either as a
Unix timestamp or a Mac timestamp. The investigator should understand what
timestamp format is used by each database to ensure that forensic tools display the
date and time correctly.

Unix timestamps
A Unix timestamp is a 10-digit number that represents time as the number of seconds
elapsed since 01/01/1970 00:00:00. This timestamp can be easily converted to a readable
string by using online converters, such as www. epochconverter. com.

As an example, we will use an online tool to convert a Unix timestamp, 1633614474, to
a readable string:

Figure 5.2 – Converting a Unix timestamp to a string

Now that we know what a Unix timestamp is, let's see how we can convert it to a readable
string using a SQL query.

http://www. epochconverter. com

120 Pattern-of-Life Forensics

In the example below, we have a single table called Events that has three columns: id,
uuid, and timestamp. The timestamp is in Unix format:

Figure 5.3 – The Events table in a SQLite database

To convert the Unix timestamp to a human-readable string, run the following query:

SELECT id, uuid, datetime(timestamp, 'unixepoch') AS date FROM
Events;

The datetime SQL function converts the numeric value in the timestamp column to a
string. The resulting time is supplied in UTC format:

Figure 5.4 – Converting a timestamp to a string

Logs, events, and user interaction 121

To display the string in local time format, run this query instead:

SELECT id, uuid, datetime(timestamp, 'unixepoch', 'localtime')
AS date FROM Events;

The time zone will reflect the settings of the device that is being used, usually the
investigator's workstation.

Mac timestamps
Another commonly used timestamp format is Mac absolute time, which is defined as
the number of seconds elapsed since the Mac epoch on 01/01/2001 00:00:00. A Mac
timestamp can be converted to a human-readable string by using online converters or
simply by adding the number of seconds since the Unix epoch (978307200) to the Mac
timestamp and then converting it to a string.

The following query illustrates the process of converting a Mac timestamp to a string in
the local time zone:

SELECT id, uuid, datetime(timestamp + 978307200, 'unixepoch',
'localtime') AS date FROM Events;

Mac timestamps are commonly used in iOS pattern-of-life data, such as in the
KnowledgeC.db database.

Logs, events, and user interaction
At the start of this chapter, we introduced pattern-of-life forensics, and we learned how
iOS stores and analyzes a number of user events and device events. Then, we went through
the most common sources of data, such as the KnowledgeC.db database, and learned
how iOS represents time through Unix timestamps and Mac absolute time.

Now, we'll take an in-depth look at one of the most forensically interesting SQLite
databases you will find on an iOS device.

The KnowledgeC database
KnowledgeC.db is the SQLite database that tracks almost all activity and device
events, ranging from battery level to what music was played. The database is located at /
private/var/mobile/Library/CoreDuet/Knowledge/, and it is only accessible
through a full filesystem acquisition. The database is made of 16 tables, although most of
the useful data is concentrated in one of them, the ZOBJECT table.

122 Pattern-of-Life Forensics

The following screenshot shows the database schema:

Figure 5.5 – The schema of the KnowledgeC database

It's important to keep in mind that data in this database will only be stored for
approximately four weeks before being purged on a first in-first out basis, so if
pattern-of-life data is an essential part of the investigation, the device should be
acquired as soon as possible.

The main table of interest from a forensic perspective is the ZOBJECT table, which
contains a row for each event or interaction with data spread over 40 columns. We will
briefly go over the most interesting columns to understand how this table logs events:

• Each row contains a ZCREATIONDATE column that records a timestamp (in MAC
format) of when the entry was written to the database.

• The ZSTARTDATE and ZENDDATE columns contain a timestamp for the start and
end times of the event.

• The ZSTARTDAYOFWEEK column indicates what day the event occurred.

• The GMT offset in seconds is indicated in the ZSECONDSFROMGMT column.

Logs, events, and user interaction 123

• The ZSTREAMNAME column indicates the type of event that occurred.

• The ZVALUESTRING column shows the bundle ID for the application relevant to
the event.

To gain a better understanding of what kind of events will be logged by this database, we'll
analyze the ZSTREAMNAME column and check its values. You can see a list of the event
types by running the following SQL query:

SELECT DISTINCT ZOBJECT.ZSTREAMNAME FROM ZOBJECT ORDER BY
ZSTREAMNAME;

On one of the latest iOS devices running iOS 14.6, this query resulted in more than 50
different event types. The following is a list of some of the most common event types and
how to interpret data from the ZOBJECT table.

/device/batteryPercentage
The batteryPercentage stream type indicates the charge level of the device's battery.
The percentage value is stored in the ZVALUEDOUBLE column.

/device/isPluggedIn
This event indicates whether the device was plugged in and charging or not. The
ZVALUEINTEGER column will indicate 0 if the device was unplugged or 1 if the device
was plugged in.

/displayIsBacklit
This event stream indicates whether the backlight was lit or not. The ZVALUEINTEGER
column will indicate 0 if the backlight was off or 1 if the backlight was on. This event can
be useful to detect human interaction while the device is locked; simply tapping the screen
will light up the display, resulting in this event being triggered.

/device/isLocked
The isLocked stream type indicates whether the device is passcode-locked or not. The
locked status is stored in the ZVALUEINTEGER column; a value of 0 indicates that the
device is locked, while a value of 1 indicates an unlocked device.

/app/inFocus
This event stream indicates which application is active and running in the foreground. The
ZVALUESTRING column stores the name of the app. The inFocus event can be analyzed
to track application usage in great detail.

124 Pattern-of-Life Forensics

/notification/usage
This event stream indicates push notification activity. The ZVALUESTRING column shows
what kind of activity was logged, such as receive, clear, and dismiss. This event can also be
useful to identify user activity, such as the user dismissing a notification when the device
is locked.

/app/webUsage
This event indicates which app is using the internet connection. The ZVALUESTRING
column shows the name of the application.

/display/orientation
The orientation event indicates a change in the device's orientation. The
ZVALUEINTEGER column will indicate 0 if the device is in portrait mode or 1 if the
device is in landscape mode.

/media/nowPlaying
This event indicates that multimedia is playing on the device. The ZVALUESTRING
column will display information on the app that is playing it, such as YouTube or
Apple Music.

By now, you should have a rough idea of what kind of events are logged in the
KnowledgeC.db database and how to analyze such records. We will now look into more
advanced topics, such as analyzing application usage in detail.

Analyzing application usage
One of the most valuable insights that can be gained by analyzing pattern-of-life data is
application usage. By analyzing the /app/inFocus event stream from the ZOBJECT
table, the investigator will be able to identify what apps were being used on a device in a
certain time span and for how long.

As an example, we'll run a query to identify what applications were used over a 48-hour
time span, starting from 24/05/2021 00:00:00 up to 26/05/2021 00:00:00.

Logs, events, and user interaction 125

First, we need to convert our date and time to a Mac absolute timestamp:

Figure 5.6 – Converting date and time to a MAC timestamp using
https://www.gaijin.at/en/tools/time-converter

Now that we have our Mac absolute timestamps, we want to query KnowledgeC.db for
all /app/inFocus events that occurred between the 643507200 timestamp and the
643680000 timestamp. To do so, run the following query:

SELECT

datetime(ZOBJECT.ZSTARTDATE+978307200,'UNIXEPOCH', 'LOCALTIME')
as "START",

datetime(ZOBJECT.ZENDDATE+978307200,'UNIXEPOCH', 'LOCALTIME')
as "END",

ZOBJECT.ZSECONDSFROMGMT/3600 AS "GMT OFFSET",

(ZOBJECT.ZENDDATE-ZOBJECT.ZSTARTDATE) as "USAGE IN SECONDS",

ZOBJECT.ZSTREAMNAME,

ZOBJECT.ZVALUESTRING

FROM ZOBJECT

WHERE ZSTREAMNAME IS "/app/inFocus"

AND ZOBJECT.ZSTARTDATE > 643507200

AND ZOBJECT.ZSTARTDATE < 643680000

ORDER BY "START";

First, we use the datetime SQL command to select the start and end timestamps and
convert them to a readable string. Then, we calculate the GMT offset in hours and the
duration of the event in seconds. Finally, we filter down the results by only selecting /
app/inFocus events that occurred between the timestamps we calculated previously.

126 Pattern-of-Life Forensics

The resulting dataset is shown below:

Figure 5.7 – The query result shows application usage

As you can see, we have a detailed breakdown of what applications were used on the
device, the date and time of the event, and how long the app was used. For example, you
can see that on this day, I briefly navigated the web using Safari, then attended a 2-hour
Zoom meeting, and finally viewed a PDF file from a website in Safari.

Another insight that can be useful for the investigation is analyzing the user's behavior
and determining whether they were engaged in any long task, such as watching a movie.
We can achieve this by ordering the result in descending order based on the USAGE
column. In the following example, I have also removed all time constraints:

SELECT

datetime(ZOBJECT.ZSTARTDATE+978307200,'UNIXEPOCH', 'LOCALTIME')
as "START",

datetime(ZOBJECT.ZENDDATE+978307200,'UNIXEPOCH', 'LOCALTIME')
as "END",

ZOBJECT.ZSECONDSFROMGMT/3600 AS "GMT OFFSET",

(ZOBJECT.ZENDDATE-ZOBJECT.ZSTARTDATE) as "USAGE IN SECONDS",

ZOBJECT.ZSTREAMNAME,

ZOBJECT.ZVALUESTRING

FROM ZOBJECT

WHERE ZSTREAMNAME IS "/app/inFocus"

ORDER BY "USAGE IN SECONDS" DESC;

Logs, events, and user interaction 127

Below, you can see the resulting data:

Figure 5.8 – Analyzing long tasks

As you can see, I was engaged in quite a few long-running tasks, such as Zoom meetings,
web browsing, and playing media on YouTube and Netflix. Now, let's suppose we want to
dig deeper into the data and analyze what happened on the evening of 1 June, 2021. From
the previous query result, we can see that on that evening, I was using Netflix. But what
exactly was I watching?

First, we'll calculate the Mac timestamps for the date and time, and then run the
following query:

SELECT

datetime(ZOBJECT.ZSTARTDATE+978307200,'UNIXEPOCH', 'LOCALTIME')
as "START",

datetime(ZOBJECT.ZENDDATE+978307200,'UNIXEPOCH', 'LOCALTIME')
as "END",

ZOBJECT.ZSECONDSFROMGMT/3600 AS "GMT OFFSET",

(ZOBJECT.ZENDDATE-ZOBJECT.ZSTARTDATE) as "USAGE IN SECONDS",

ZOBJECT.ZSTREAMNAME,

ZOBJECT.ZSTRUCTUREDMETADATA,

ZOBJECT.ZVALUESTRING

FROM ZOBJECT

WHERE ZOBJECT.ZSTARTDATE > 644266800

AND ZOBJECT.ZSTARTDATE < 644277599

ORDER BY "START";

128 Pattern-of-Life Forensics

The result is shown below:

Figure 5.9 – The query result shows user interaction in the time span of interest

By analyzing the resulting dataset, we can see that the Netflix app was launched, a /
media/nowPlaying event was triggered, and the device was rotated into landscape
mode. To understand what was playing on Netflix, we need to analyze the metadata
associated with the event. In this case, the associated ID is 51732, which we will use to
query the ZSTRUCTUREDMETADATA table:

SELECT

Z_PK AS "ID",

Z_DKNOWPLAYINGMETADATAKEY__TITLE

FROM ZSTRUCTUREDMETADATA

WHERE "ID" = "51732";

The result, shown in the following screenshot, displays the name of the application that
was playing, Netflix, and the name of the movie I was watching:

Figure 5.10 – The metadata associated with the /media/nowPlaying event

Logs, events, and user interaction 129

As you can see from these simple examples, the investigator has the ability to analyze
the user's behavior in great detail and understand not only what application the user was
using but also what exactly the user was doing with a particular application. For example,
by customizing SQL queries, it is possible to learn what website the user visited or what
PDF file the user was reading. We will look at these use cases in detail over the course of
the next chapters.

Tip
Gaining insights from pattern-of-life data would not be possible without the
generous contributions from the Digital Forensics and Incident Response
(DFIR) community. In particular, most of the queries used in this chapter are
based on the research carried out by Sarah Edwards (@iamevltwin). You
can view her blog by going to https://www.mac4n6.com.

Analyzing user interaction
In any kind of digital investigation involving a smart device, typically one of the first
questions investigators want to answer is when the device was used and when human-
device interaction occurred. This can easily be discovered by looking out for events that
require human interaction, such as unlocking the device or activating the screen.

The following query shows when the device was locked or unlocked:

SELECT

datetime(ZOBJECT.ZSTARTDATE+978307200,'UNIXEPOCH', 'LOCALTIME')
as "DATE / TIME",

ZOBJECT.ZSECONDSFROMGMT/3600 AS "GMT OFFSET",

CASE ZOBJECT.ZVALUEINTEGER

 WHEN '0' THEN 'UNLOCKED'

 WHEN '1' THEN 'LOCKED'

 END "IS LOCKED"

FROM ZOBJECT

WHERE ZOBJECT.ZSTREAMNAME LIKE "/device/isLocked"

ORDER BY "DATE / TIME";

https://www.mac4n6.com

130 Pattern-of-Life Forensics

The result is shown in the following screenshot:

Figure 5.11 – The query shows the device lock status

If, however, we want to find out every time the screen was activated, even if the device was
not unlocked, we can do so by running this query:

SELECT

datetime(ZOBJECT.ZSTARTDATE+978307200,'UNIXEPOCH', 'LOCALTIME')
as "DATE / TIME",

ZOBJECT.ZSECONDSFROMGMT/3600 AS "GMT OFFSET"

FROM ZOBJECT

WHERE ZOBJECT.ZSTREAMNAME LIKE "/display/isBacklit"

AND ZOBJECT.ZVALUEINTEGER = '1'

ORDER BY "DATE / TIME";

The resulting records will show when the display was activated. The queries used in these
examples should be straightforward to understand and can easily be customized to match
other events that can be of interest to the investigation.

We will now look into another option to analyze pattern-of-life data, using an open
source tool.

Introducing Apollo 131

Introducing Apollo
So far, we have learned how to manually analyze pattern-of-life data by querying the
SQLite databases. However, there is another option that automates the process and allows
the investigator to look at all the data in a unified database.

Apollo, which stands for Apple Pattern of Life Lazy Output'er, is a Python script
developed by Sarah Edwards (@iamevltwin) that correlates multiple sources of data
into a unified timeline, simplifying the examiner's job of finding out what exactly was
happening on the device.

The tool consists of dozens of highly configurable modules that each query a specific iOS
database to extract data and events. The main Python script then compiles the results of
each module into a unified CSV file or SQLite database.

We'll now go over the steps required to download the tool, run it, and export the results
into a single SQLite database:

1. To download Apollo, head over to its GitHub repository located at https://
github.com/mac4n6/APOLLO and download the latest version as a ZIP archive
or by cloning the repository by running the git clone command.

2. Next, run the tool by specifying the export format, the location of the modules
directory, and the location of the data that should be analyzed, such as the folder
that contains the SQLite databases or the full filesystem extraction. For example,
running python apollo.py -output sql modules/ fs-extraction/
will run Apollo in SQL mode, analyzing the files in the fs-extraction folder
and running all modules found in the modules folder. Apollo can be run using
different options too; for a full list of all available command-line options, you can
refer to the project's GitHub page.

3. When the tool ends the process, the results will be stored in a file called
apollo.db.

4. You can then proceed to analyze the SQLite database using your tool of choice,
such as DB Browser.

https://github.com/mac4n6/APOLLO
https://github.com/mac4n6/APOLLO

132 Pattern-of-Life Forensics

The following screenshot shows the output database in DB Browser:

Figure 5.12 – The Apollo database displayed in DB Browser

The database consists of a single table, APOLLO, which contains a timeline of all the
data that was processed by the tool's modules. The following is a brief description of the
table's columns:

• The Key column contains the timestamp of when the event occurred, displayed as a
human-readable string.

• The Activity column shows a simple description of what kind of event
was logged.

• The Output column contains a JSON object with all the data pertaining to
a specific event.

• The Database column indicates from which database the event was extracted.

• The Module column indicates the name of the module that was responsible for
extracting and analyzing the event.

Introducing Apollo 133

Typically, the Output command will contain most of the interesting data from a
forensic perspective. The following figure shows what the JSON object looks like for
a Battery Level event:

Figure 5.13 – The JSON object stored in Apollo's Output column

The beauty of Apollo is that it is a fully modular and customizable tool that allows the
investigator to extract all pattern-of-life data or choose to only include some artifacts by
using the appropriate modules. Condensing the result into a single file means that the
investigator gains the ability to view a timeline of events that can be easily filtered down
based on date and time or by searching for a specific event.

Apollo is under active development and modules are continually being added and
updated. Finally, it should be noted that the tool not only supports iOS but also allows the
analysis of pattern-of-life data from MacOS devices and others.

134 Pattern-of-Life Forensics

Summary
In this chapter, we learned what pattern-of-life forensics is and how an investigator can
benefit from analyzing such data to visualize user behavior and detect abnormal patterns.

First, we introduced some of the databases that contain relevant data, such as
KnowledgeC.db and InteractionC.db. Then, we learned how a device handles date
and time, and the differences between Unix and Mac timestamps. We also learned how to
convert a specific date and time to a timestamp and vice versa.

Later in the chapter, we focused on the most popular database found on an iOS device
by performing a full filesystem acquisition – KnowledgeC.db. We learned which are
the most data-rich tables and how the data is organized in different columns. Then, we
described some of the most interesting events logged by this database and introduced SQL
queries that can be used to query the database for application usage and user interaction.

Finally, in the last section of this chapter, we introduced an open source tool, Apollo, that
greatly simplifies the process of analyzing pattern-of-life data by aggregating the results
into a single database.

In the next chapter, we will dive deep into location forensics.

6
Dissecting Location

Data
In the previous chapter, we learned all about pattern-of-life artifacts that can be found on
iOS devices, such as application usage and system events, and how to manually analyze
databases and logs. In this chapter, we will focus on one of the most interesting types of
data that can be found on a mobile device, which is location data.

Mobile devices store a wealth of location data, such as data pertaining to cell towers, Wi-Fi
networks, and Bluetooth devices that come into close proximity with the device. Location
artifacts can also be extracted from third-party applications or multimedia files.

We'll start the chapter by learning what location data is, how a device determines its
position, and where this data is stored. We will learn the differences between GPS, cell
tower triangulation, and Wi-Fi locations. Then, we will take an in-depth look at some
of the SQLite databases that store location data, and we will learn how to analyze them
to gain meaningful insights. Finally, we will learn how forensic tools such as Cellebrite
Physical Analyzer and Apollo can speed up the process of analyzing location data.

136 Dissecting Location Data

In this chapter, we will cover the following topics:

• Introducing location data

• GPS fixes, cell towers, and Wi-Fi networks

• Locating location artifacts

• Analyzing location data using forensic tools

Introducing location data
The investigation of a device's location data can serve many different facets of an event
or series of events. Obtaining information pertaining to the device's location, such as cell
tower data or GPS fixes, can help identify whether a device's owner was at a geographic
location at a particular date and time, as well as the owner's route of travel.

The device's location is calculated by Location Services, which is an iOS API that is used
by all applications that require location data. This means that when developers are creating
an iOS app, they don't need to write everything from scratch but can get a device's
location simply by requesting it from Location Services.

Typically, a geographic location is expressed in coordinates, such as latitude and
longitude. Additionally, Location Services also determines the device's altitude
and the radius of how accurate the location is, expressed in meters. This is known as
horizontal accuracy.

GPS fixes, cell towers, and Wi-Fi networks 137

Figure 6.1 – Geographic locations are expressed using latitude and longitude

In the following part of the chapter, we will learn how Location Services works to
determine the device's position.

GPS fixes, cell towers, and Wi-Fi networks
The Location Services iOS API uses a collection of technologies known as Assisted GPS
(A-GPS) to determine the device's position. The main reason why mobile devices use
A-GPS instead of only traditional satellite GPS is that the latter does not perform well
inside buildings; it is also slower than other technologies and quickly drains a device's
battery. A-GPS works by augmenting satellite GPS by using external sources (such as cell
towers) that enhance the speed, quality, and precision of satellite signals. Data received by
external sources is then consolidated to figure out the device's precise location.

138 Dissecting Location Data

The following is a list of sources that power A-GPS:

• Satellite GPS

• Cell towers

• Wi-Fi networks

• Bluetooth devices

We will look into these in more detail in the following sections.

You may be wondering how an iOS device manages to resolve locations from Wi-Fi
networks or cell towers; this is implemented by Apple using a peer-based mechanism
where each iOS device contributes to create a map of networks and devices.

In general, this mechanism consists of three steps:

1. If Location Services is enabled, each iOS device periodically collects and stores the
current GPS position and a list of surrounding cell towers and Wi-Fi hotspots.

2. This data is then sent to Apple servers anonymously, where it is consolidated with
other collected information and third-party providers.

3. The data is synced back to the iOS device when a location service requests the
device's position.

For instance, if a location service requests the device's position and satellite GPS is
unavailable, iOS will scan for nearby cell towers and query Apple's peer-generated map
to find any geolocation coordinates associated with those cell towers. Through this
mechanism, Location Services can get a rough position in a few seconds and then report a
more accurate GPS-sourced location when available.

Every iOS device also has an internal cache that stores a large quantity of locations, cell
towers, and Wi-Fi networks; by accessing the local cache, the device is able to resolve
locations from Wi-Fi networks without needing a data connection. To keep this data up to
date, the cache database is purged periodically.

Other than this peer-based mechanism, Apple also relies on external sources to translate
cell towers and wireless networks into physical locations; wardriving, for instance, is the
act of searching for radio signals by a person usually moving in a vehicle, using a laptop or
smartphone, recording their own GPS coordinates together with the data pertaining to the
radio signals.

GPS fixes, cell towers, and Wi-Fi networks 139

Satellite GPS
Traditional GPS, also known as satellite GPS, is the most accurate source of location data
for iOS devices.

This technology is based on a network of over 30 satellites orbiting the earth at an altitude
of 20,000 kilometers. Each satellite emits a signal that is transmitted to earth via radio
waves, which contains the satellite's identifier, its current position, and a timestamp.
Therefore, when a device intercepts a satellite signal, it uses the time difference between
the time of signal reception and the broadcast time to compute the distance, or range,
from the receiver to the satellite. The device then uses the calculated distance and the
satellite's location to calculate its approximate position.

It should be noted that to calculate a precise location, the receiver must be locked on to
the signal of at least three satellites. With four or more satellites in view, the receiver can
determine its 3D position: latitude, longitude, and altitude.

Certain atmospheric factors and other error sources can affect the accuracy of the device's
GPS receiver; however, receivers are typically accurate to within 10 meters.

Figure 6.2 – GPS satellite triangulation calculates the receiver's location

140 Dissecting Location Data

From a forensic perspective, GPS location data is stored in the Cache.sqlite database
located at /private/var/mobile/Library/Caches/com.apple.routined/.
There are many more databases of interest that contain valuable location data. We will
look into these in detail later on in the chapter.

Cell towers
Cell towers are another source of data that can be used by an iOS device to calculate its
position. This process is called trilateration and, compared to GPS, it is less precise but
much faster and has little to no impact on battery life.

The accuracy of trilateration depends on the quality of the signal and the number of
cell towers in close proximity to the device. A higher number of towers entails a higher
confidence level in the calculated geolocation.

A deep understanding of the process is beyond the scope of this book, but put simply,
trilateration is the process whereby a device picks up the radio signal that is broadcasted
by a cell tower and evaluates a value called the Received Signal Strength Indicator (RSSI)
to estimate the distance from the cell tower to which it is connected. The lower the signal,
the further the device is from the tower.

As radio waves can be affected by objects, effectively weakening the signal, the distance
between the device and the tower is only an approximation. If the location is served by
more than one tower, the device can pinpoint its location more precisely by picking up the
signal from the secondary towers, even if it's not effectively connected to these towers.

GPS fixes, cell towers, and Wi-Fi networks 141

Figure 6.3 – Cell tower trilateration process

It's easy to see how the accuracy of the trilateration process varies so much depending on
the location and density of the cell towers.

Wi-Fi and Bluetooth
Wi-Fi networks and hotspots are also part of the A-GPS technology and can be used in
combination with cell towers and satellite GPS to pinpoint a device's location.

Similar to cell towers, Wi-Fi hotspots also broadcast a radio signal and the strength
of this signal can be measured through the RSSI. Mobile devices are constantly scanning
for wireless hotspots, searching for known networks, so it makes sense to use these
to calculate a device's whereabouts. The range of a Wi-Fi signal is only about 70 m
outdoors and 40-50 m indoors, so if a device picks up the signal, it must be physically
near to the hotspot.

142 Dissecting Location Data

With this in mind, it's clear how mobile devices can evaluate the RSSI of Wi-Fi networks
to establish an approximate distance between the device and the hotspot. Then, iOS
resolves this data to a physical location using the peer-based mechanism described
earlier on.

Bluetooth beacons can also be used in a similar way.

Locating location artifacts
In the first part of this chapter, we introduced the Location Services API and learned how
iOS uses different technologies to assess its position. Now, we'll take an in-depth look at
the SQLite databases where geolocation data is stored.

The following is a list of files of interest that can only be found in a full
filesystem extraction:

• /private/var/mobile/Library/Caches/com.apple.routined/
Cache.sqlite

This is the primary storage means for iOS location data. The ZRTCLLOCATIONMO
table contains several useful records, such as GPS coordinates, timestamps, and a
horizontal accuracy value, which is an indicator of how accurate the device believes
the GPS coordinates to be. The ZRTWIFIACCESSPOINTMO table stores a list of
Wi-Fi networks that the device has scanned. Generally speaking, data contained in
this database should be considered up to date and accurate.

• /private/var/mobile/Library/Caches/com.apple.routined/
Local.sqlite

This SQLite database is identical to the Cache.sqlite database in its structure.
Depending on the iOS version, the ZRTLEARNEDLOCATIONOFINTERESTMO table
usually contains details for any frequent locations, which we will look into later on.

• /private/var/mobile/Library/Caches/com.apple.routined/
Cloud-V2.sqlite

As the name suggests, this database stores location data that should be synced
to iCloud.

• /private/var/root/Library/Caches/locationd/cache_
encryptedB.db

Locating location artifacts 143

This database contains harvested location data received by Apple, such as radio
cells and Wi-Fi networks; these records refer to cell towers in close proximity to the
device, although the accuracy of these geo-cordinates should always be checked.

• /private/var/root/Library/Caches/locationd/cache_
encryptedC.db

This database stores data received from the device's accelerometer, such as motion
data and generic health-related artifacts.

• /private/var/root/Library/Caches/locationd/consolidated.db

Finally, this database is used by the GeoFence API, and any application that creates
a geofence will be stored here.

To gain a better understanding of how location-related data is stored in these databases,
we'll analyze each of them separately and we'll learn what queries can be used to extract
meaningful insights.

Analyzing location data
As we've already learned, iOS devices track a multitude of different location-related
artifacts. The investigator should have a clear understanding of how and where these are
stored and which ones are locations that the user actually visited, versus locations that
were simply in close proximity to the device.

The first step in a forensic analysis of location data is the Cache.sqlite database. This
database contains an extremely accurate history of coordinates provided by the device's
GPS receiver. Typically, this data is stored for just over a week.

We're going to start by looking at the ZRTCLLOCATIONMO table. The following is the
table's structure:

• ZLATITUDE and ZLONGITUDE store the geocoordinates.

• The ZALTITUDE column indicates an estimate of the altitude. This data is provided
by the device's accelerometer.

• The ZHORIZONTALACCURACY column indicates how accurate the device believes
the coordinates to be, expressed in meters.

• ZVERTICALACCURACY indicates the altitude's accuracy, in meters.

• The ZTIMESTAMP column stores the timestamp, in Mac Absolute Time format.

144 Dissecting Location Data

A full history of the device's location data can be obtained by running the following query:

SELECT

 DATETIME(ZTIMESTAMP + 978307200, 'UNIXEPOCH') AS
"TIMESTAMP",

 ZLATITUDE AS "LATITUDE",

 ZLONGITUDE AS "LONGITUDE",

 ZALTITUDE AS "ALTITUDE",

 ZSPEED AS "SPEED (M/S)",

 ZSPEED*2.23694 AS "SPEED (MPH)",

 ZSPEED*3.6 AS "SPEED (KMPH)",

 ZHORIZONTALACCURACY AS "HORIZONTAL ACCURACY",

 ZVERTICALACCURACY AS "VERTICAL ACCURACY"

 FROM

 ZRTCLLOCATIONMO;

First, we use the datetime SQL command to convert the Mac Absolute timestamp to
a readable string. Then, we select the relevant columns from the table and calculate the
speed at which the device was moving.

The following figure shows the query results:

Figure 6.4 – The query results show the device's location

Locating location artifacts 145

As you can see, location artifacts provide the investigator with an accurate idea of where
a certain user's device was at a given moment. Typically, this data is extremely granular
and it's not uncommon to see entries logged every second. The differences in the data's
granularity can be explained by the fact that GPS is not available everywhere, so on these
occasions, the device reverts to using Wi-Fi networks and cell towers to establish its
position, if there are any in close proximity.

Once the investigator has acquired a list of geocoordinates, these can be used with a map
provider to obtain visual feedback of the device's whereabouts.

Figure 6.5 – The query results are mapped out to determine the user's journey

It should be noted that different databases store different types of location data that can be
more or less accurate. From research that has been conducted, this data, which is known
as routined location data, has proven to be highly accurate.

146 Dissecting Location Data

Understanding Significant Locations
With the release of iOS 8, Apple introduced a feature known as Frequent Locations,
which was renamed to Significant Locations starting from iOS 10. Essentially, every time
a device visits a location, a record is stored in a SQLite database with details from the
device's journey. When the device has returned to the same location enough times, that
becomes a significant location.

As of today, it is still unclear how the algorithm that Apple uses works and how many
visits to a specific location are required for it to be considered significant. In terms of
area, research has found that whenever a device is within a 250 m radius of a significant
location, a visit to that location is logged.

If location services are enabled, Significant Locations can be viewed directly from
the device by going to Settings | Privacy | Location Services | System Services |
Significant Locations.

Figure 6.6– Significant Locations can be viewed directly on the device

Please keep in mind that since iOS 15, viewing Significant Locations on the device only
shows a summary of these locations. The complete data will be available only from a full
filesystem extraction.

Locating location artifacts 147

From a forensics point of view, frequent location data is invaluable, as it allows an
investigator to understand what locations a user visited often. Also, data pertaining to
significant locations typically goes way back in time.

To view this data, we're going to run the following query on the Local.sqlite
database:

SELECT

 DATETIME(ZRTLEARNEDLOCATIONOFINTERESTVISITMO.ZENTRYDATE
+ 978307200, 'UNIXEPOCH') AS "ENTRY",

 DATETIME(ZRTLEARNEDLOCATIONOFINTERESTVISITMO.ZEXITDATE
+ 978307200, 'UNIXEPOCH') AS "EXIT",

 (ZRTLEARNEDLOCATIONOFINTERESTVISITMO.ZEXITDATE-ZRTLE
ARNEDLOCATIONOFINTERESTVISITMO.ZENTRYDATE)/60.00 AS "DURATION
(MINUTES)",

 ZRTLEARNEDLOCATIONOFINTERESTMO.ZLOCATIONLATITUDE AS
"LATITUDE",

 ZRTLEARNEDLOCATIONOFINTERESTMO.ZLOCATIONLONGITUDE AS
"LONGITUDE",

 ZRTLEARNEDLOCATIONOFINTERESTVISITMO.
ZLOCATIONUNCERTAINTY AS "LOCATION UNCERTAINTY",

 ZRTLEARNEDLOCATIONOFINTERESTVISITMO.ZDATAPOINTCOUNT AS
"DATA POINTS"

 FROM

 ZRTLEARNEDLOCATIONOFINTERESTVISITMO

 LEFT JOIN

 ZRTLEARNEDLOCATIONOFINTERESTMO

 ON ZRTLEARNEDLOCATIONOFINTERESTMO.Z_PK =
ZRTLEARNEDLOCATIONOFINTERESTVISITMO.ZLOCATIONOFINTEREST;

Although this query may seem complicated, it's actually a lot easier if we break it down
into logical steps: first, we use the datetime SQL command to convert the timestamps
into readable strings. The Entry field refers to when the device visited the significant
location, and the Exit field indicates when the device left the location. Then, we
calculate the duration (Duration) of the visit and print Latitude, Longitude, and
Uncertainty. Finally, we print the number of data points (Data Points) for that
visit to that particular location.

148 Dissecting Location Data

The following figure shows the results of the query:

Figure 6.7 – The query results show details about significant location visits

As you can see from the query results, Significant Locations data can help the investigator
identify locations where the user may have been at the time of an incident. It can also help
identify common and frequently visited locations, such as home or work, which can help
investigative leads.

A final note: this data can be deleted by the user. In the user interface, the Clear History
option is present, and if the user selects this, significant location data will be deleted
permanently.

Analyzing Wi-Fi locations
As we saw in the first part of the chapter, location-related data on iOS devices isn't
limited to GPS coordinates, as the A-GPS technology uses multiple sources to figure out a
location, such as radio signals from Wi-Fi hotspots.

When geocoordinates are requested from Location Services, the device will scan the
surrounding area for any Wi-Fi signals and will log the details of these networks, if the
RSSI is strong enough. It's important to note that iOS will use any wireless signal for
geo-localization, including Wi-Fi networks that the device is not connected to. If the
device has an internet connection, Apple's peer-based map will be used to resolve the
radio signal to a physical location.

Details of Wi-Fi networks scanned by the device are stored in the Cache.sqlite
database, in the ZRTWIFIACCESSPOINTMO table.

Locating location artifacts 149

The following is a list of the most relevant columns:

• The ZMAC column indicates the MAC address (or hardware address), which is a
unique identifier assigned to a network interface.

• The ZCHANNEL column stores the channel number used by the wireless interface.

• The ZRSSI column indicates the signal strength.

• The ZDATE column stores a timestamp of when the wireless interface was found.

Now that we know what data is stored, we can run the following SQL query to extract all
the necessary data:

SELECT

 DATETIME(ZRTWIFIACCESSPOINTMO.ZDATE + 978307200,
'UNIXEPOCH') AS "DATE",

 ZRTWIFIACCESSPOINTMO.ZMAC AS "MAC ADDRESS",

 ZRTWIFIACCESSPOINTMO.ZCHANNEL AS "CHANNEL",

 ZRTWIFIACCESSPOINTMO.ZRSSI AS "RSSI"

 FROM ZRTWIFIACCESSPOINTMO

 ORDER BY "DATE" ASC;

The query will display the results in chronological order. The following figure shows what
the results look like:

Figure 6.8 – The results show details about wireless devices that were scanned by the device

150 Dissecting Location Data

Although this table does not store geocoordinates such as latitude and longitude, it still
provides the investigator with details as to when and which wireless signals were captured
by the device. By correlating this data to external data sources (such as a list of known
network devices and their MAC addresses), it is possible to place the device at a certain
location at a certain point in time.

Understanding Harvested Locations
At the start of the chapter, we introduced the A-GPS technology and learned how Apple
maintains a peer-based map of locations that are downloaded back onto the device when
geolocalization is requested from Location Services. This data comprises thousands of
records related to cell towers and Wi-Fi networks that are located in close proximity to the
device, along with their geographic coordinates. The device can use this data to resolve a
radio signal into a physical location without needing a GPS signal.

The data downloaded onto the device from Apple is called Harvested Locations data and
it can be found in the cache_encryptedB.db database.

Here, we can find several tables of interest:

• Cell tower data can be found in the following tables: CdmaCellLocation,
CellLocation, and LteCellLocation.

• Wi-Fi device data is stored in the WifiLocation table.

Routined Locations versus Harvested Locations
Before we begin analyzing this data, it's important to understand the difference
between locations that the device visited and locations provided by Apple: the
data we looked at previously, also known as routined location data, is typically
very accurate as it comes from the device's GPS and can show in detail where
the device was located. Harvested Locations data, on the other hand, consists of
locations provided by Apple as a way to augment the device's knowledge about
the area. This data is not retrieved from the built-in GPS receiver, but rather
represents cell towers and wireless devices that are located in close proximity to
the device.

Locating location artifacts 151

Analyzing harvested cell tower data
Cell tower data is stored in the cache_encryptedB.db database and is retained for
about a week. The following is a list of the most relevant columns:

• MCC, or Mobile Country Code, indicates the country code of the cell tower.

• MNC, or Mobile Network Code, identifies the mobile operator.

• CI, or Cell ID, is a unique number used to represent each transceiver station of a
cell tower.

• The HorizontalAccuracy value indicates how precise the device believes the
coordinates are and is expressed in meters.

• The Latitude and Longitude columns store the geocoordinates.

We can extract all cell-related data by running a SQL query, such as the one shown
in the following code block. On the device used for research, cell data was stored in
the LTECELLLOCATION table; however, this is dependent on the device model and
iOS version:

SELECT

 DATETIME(TIMESTAMP + 978307200,'UNIXEPOCH') AS
"TIMESTAMP",

 MCC AS "MCC",

 MNC AS "MNC",

 CI AS "CI",

 HORIZONTALACCURACY AS "HORIZONTAL ACCURACY",

 LATITUDE AS "LATITUDE",

 LONGITUDE AS "LONGITUDE"

 FROM LTECELLLOCATION;

152 Dissecting Location Data

The results of the query are shown in the following figure:

Figure 6.9 – The query results show details about cell towers and geolocation

From research that has been carried out by comparing routined location data to cell tower
data, it's clear that harvested data can be extremely inaccurate and should not be trusted
without prior validation. Also, the HorizontalAccuracy value gives a good idea of
how accurate (or inaccurate) the location data is. It's quite common for cell tower data to
indicate a range of several kilometers and the device's position can fall anywhere within
that range. Nevertheless, harvested data can still aid an investigation by providing an
approximation of the device's location.

Analyzing harvested Wi-Fi data
In addition to cell tower data, the cache_encryptedB.db database also stores
harvested wireless networking data. This data can be found in the WifiLocation table
and is retained for about a week.

In addition to the Timestamp, Latitude, and Longitude values, the table contains
the following columns:

• The MAC column contains the device's hardware address, stored as a base-10
number.

• The Channel column indicates the channel number used by the wireless device.

The following query will extract location data from the WifiLocation table:

SELECT

 DATETIME(TIMESTAMP + 978307200,'UNIXEPOCH') AS
"TIMESTAMP",

Locating location artifacts 153

 MAC AS "MAC",

 CHANNEL AS "CHANNEL",

 SCORE AS "SCORE",

 REACH AS "REACH",

 HORIZONTALACCURACY AS "HORIZONTAL ACCURACY",

 LATITUDE AS "LATITUDE",

 LONGITUDE AS "LONGITUDE"

 FROM WIFILOCATION;

Keep in mind that the MAC address will have to be converted into a base-16 number. This
data can be correlated to the Wi-Fi artifacts found in the Cache.sqlite database to
gain a better understanding of where the device was located.

Advanced iOS location artifacts
So far, we've only just scratched the surface of the location-related data that can be found
on iOS devices! There are many more sources of location data that should be kept in
consideration during an investigation.

The following is a brief description of additional location-related artifacts:

• GeoFences: A GeoFence is a location, defined by latitude, longitude, and radius.
The fence, defined by the radius, is constantly monitored for the device entering or
exiting the area. As an example, some retail store applications create a GeoFence
so that the user receives a push notification when they enter the store. GeoFences
are stored in the /private/var/root/Library/Caches/location/
consolidated.db database, within the Fences table.

• Motion data: Every iOS device contains an accelerometer that logs any kind of
activity, such as the device moving. Motion data is also used for health purposes,
such as to count steps. This data is stored in the /private/var/root/
Library/Caches/location/cache_encryptedC.db database, in the
MotionStateHistory table.

• Multimedia files: Media files such as photos and videos can contain metadata,
including location data, although this can be edited by the user directly from
the device, starting with iOS 15. Be sure to check out this data using an EXIF
data viewer.

• Third-party apps: Applications such as Waze, Google Maps, or navigation-based
third-party applications may contain additional location-related data. We'll look
into these apps in Chapter 10, Analyzing Third-Party Apps.

154 Dissecting Location Data

So far, we have learned how to manually analyze location-related data by running SQL
queries on databases. However, there are other options that automate the process, such as
using forensic tools.

Analyzing location data using forensic tools
We will focus on two tools: a commercial tool, Cellebrite Physical Analyzer, and a free
tool, Apollo.

Viewing location data with Physical Analyzer
Cellebrite Physical Analyzer automates the task of analyzing location data by displaying
GPS, cellular, and Wi-Fi locations in a unified view. Keep in mind that, to access location
data, you will need to perform a full filesystem acquisition, as the files of interest are not
available in a logical or iTunes backup.

To view location data, from the menu on the left side, choose Location Related | Device
Locations | Native Locations:

Figure 6.10 – Viewing location data in Physical Analyzer

Analyzing location data using forensic tools 155

The following figure shows the remaining columns in detail:

Figure 6.11 – Physical Analyzer specifies the source file for the artifact

As you can see from the preceding figure, for each record, Physical Analyzer will specify
the source file from which the record was parsed. Keep in mind that just because a
location appears in the results, it doesn't necessarily mean that the device actually visited
that location, as this tool will also display harvested data.

Analyzing location data with Apollo
Apollo, which we introduced in the previous chapter, is a Python script that correlates
multiple sources of data into a unified timeline, simplifying the examiner's job of finding
out what exactly was happening on the device. The tool consists of dozens of highly
configurable modules that each query a specific iOS database to extract data and events.
Apollo supports both routined location data and harvested data.

156 Dissecting Location Data

We'll now go over the steps required to download the tool, run it, and export location data
into a KMZ file that can be imported into a map provider service:

1. To download Apollo, head over to its GitHub repository located at https://
github.com/mac4n6/APOLLO and download the latest version as a ZIP archive
or by cloning the repository by running the git clone command.

2. Next, run the tool by specifying the export format, the location of the module's
directory, and the location of the data that should be analyzed, such as the folder
that contains the SQLite databases or the full filesystem extraction. For example,
running python3 apollo.py extract -o sql -p apple -v 14 -k
modules/ fs-extraction/ will run Apollo in SQL mode, analyzing the files
in the fs-extraction folder and running all modules found in the modules
folder. Make sure you use the -k option to output location files.

3. When the tool ends the process, the results will be stored in a file called apollo.
db and in several KMZ files.

4. You can then proceed to import the KMZ files using your tool of choice, such as
Google Earth or Google Maps.

The following figure shows one of the KMZ files outputted by Apollo imported into
Google Maps:

Figure 6.12 – Google Maps displaying location data exported by Apollo

https://github.com/mac4n6/APOLLO
https://github.com/mac4n6/APOLLO

Summary 157

As you can see from the preceding figure, importing location-related data into a map
service allows the investigator to instantly visualize the device's whereabouts and, possibly,
the user's journey.

Summary
In this chapter, we learned all about location artifacts and how an investigator can benefit
from analyzing such data.

First, we introduced the Location Services API. Then, we learned how A-GPS uses
multiple technologies to figure out a device's position, such as satellite GPS, Wi-Fi,
and cell towers. We learned how iOS manages Significant Locations and where this
data is stored.

Later on in the chapter, we focused on the most popular location-related databases found
on an iOS device. We learned which are the most data-rich tables and how the data is
organized in different columns. Then, we learned how to extract location data by running
SQL queries. We learned about the different accuracy levels that can be found in routined
data versus harvested location data.

Finally, in the last section of this chapter, we went through the steps required to view
location artifacts in Cellebrite Physical Analyzer and Apollo, an open source tool that
greatly simplifies the process of analyzing location data by exporting it into KMZ files that
can be imported into mapping providers, such as Google Maps.

In the next chapter, we will dive deep into connectivity forensics, including cellular usage
and internet browsing.

7
Analyzing

Connectivity Data
In the previous chapter, we introduced location-related artifacts and learned how an
investigation can leverage such data to obtain a general geographical location of where the
device may have been. In this chapter, we will focus on connectivity data.

The modern mobile phone has evolved from being a simple handheld device that's
used to communicate via voice into a mobile computing device that communicates
with the internet. Almost every interaction between a device and the external world
is logged by the operating system, so it shouldn't come as a surprise that connectivity
data has become the single most important source of evidence in virtually every type of
investigation: artifacts such as call logs and internet navigation history are invaluable for
the modern investigator.

We'll start this chapter by looking at cellular-related artifacts, contacts, and phone calls,
including FaceTime videocalls. Then, we'll learn all about networking forensics, including
how to analyze a device's favorite Wi-Fi networks and detailed network usage. We will also
briefly look into Bluetooth forensics. Finally, we'll learn about internet-related artifacts
and how to analyze Safari history.

160 Analyzing Connectivity Data

In this chapter, we will cover the following topics:

• Introducing cellular forensics

• Analyzing networking data

• Introducing Bluetooth forensics

• Understanding Safari forensics

Introducing cellular forensics
In the first part of this chapter, we will focus on understanding what cellular-related
artifacts can be found on an iOS device and what insights we can gain by analyzing
such data.

But first, what exactly is cellular data? This term refers to all those artifacts that involve
telephony services and data connections, and they allow the investigator to answer
questions such as the following:

• Who has the user communicated with?

• When did the device register with the cellular network?

• What websites were browsed on the device?

The first step in our analysis involves extracting some meaningful data from the com.
apple.commcenter.plist property list (PLIST), which is located at /private/
var/wireless/Library/Preferences/:

Introducing cellular forensics 161

Figure 7.1 – The com.apple.commcenter PLIST

This PLIST contains several useful cellular-related values, such as its Integrated
Circuit Card Identifier (ICCID), International Mobile Subscriber Identity (IMSI),
International Mobile Equipment Identity (IMEI), the device's phone number, and
details of the last cell tower that the device connected to.

ICCID
The ICCID is the SIM card's serial number. This value uniquely identifies the physical
SIM card and will change if the card is replaced, even if the phone number remains
the same. This value can be extracted from the PLIST by looking at the
LastKnownICCID key.

162 Analyzing Connectivity Data

IMSI
The IMSI can be found by looking at the lastGoodImsi key. This value is typically 15
digits long and identifies a SIM card on its network. It's important to understand that this
code is tied to the phone number, not the physical SIM card. The IMSI is used by mobile
network operators to connect phone calls and communicate with the SIM card.

IMEI
The IMEI is a unique 15-digit code that identifies a particular mobile device. This
code has no relationship with the subscriber and only identifies the mobile phone;
however, when a mobile device registers on a GSM network, it also provides the
device's IMEI, so operators can block devices that have been reported as stolen by
adding their IMEI to a blocklist. This code can also be used by law enforcement and
intelligence agencies to track mobile devices, which can be located by analyzing the cell
tower the device connects to. The IMEI can be found in the PLIST by looking at the
kEntitlementsSelfRegistrationUpdateImei key.

MCC and MNC
The Mobile Country Code (MCC) and Mobile Network Code (MNC) are a combination
of values that uniquely identify a cell tower. Mobile iOS devices store the last known
MCC and MNC values in the PLIST under the LastKnownServingMcc and
LastKnownServingMnc keys. These values, together with a map of known cell towers,
can be used to pinpoint the device's last position.

Phone number
Finally, the device's phone number is also stored in the PLIST, under the
NetworkPhoneNumber key. It's important to keep in mind that iOS devices support not
only physical SIM cards but also eSIM cards: these cards are embedded in a mobile device
and can connect you to any operator offering eSIM services. The eSIM is configured
directly on the device and works the same way as a traditional SIM card, but you don't
need a physical SIM card to use it.

Analyzing the PowerLog
In the previous section, we learned how to extract cellular-related data, such as identifying
the last cell tower that the device connected to. However, there are many more interesting
artifacts, such as CurrentPowerLog.PLSQL, which can be found in /private/var/
containers/Shared/SystemGroup/<GUID>/Library/BatteryLife/.

Introducing cellular forensics 163

We introduced PowerLog in Chapter 5, Pattern-of-Life Forensics. We will now focus on the
PLBBAGENT_EVENTFORWARD_TELEPHONYREGISTRATION table, which logs events
such as when the device registers with the GSM network.

The following query will extract the relevant records:

SELECT

 DATETIME(TIMESTAMP , 'UNIXEPOCH') AS TIMESTAMP,

 DATAIND AS "SERVICE",

 OPERATOR AS "OPERATOR",

 STATUS AS "STATUS"

 FROM PLBBAGENT_EVENTFORWARD_TELEPHONYREGISTRATION;

As shown in the following screenshot, the STATUS column indicates what event occurred,
such as the device searching for or registering with the cellular network. The OPERATOR
column shows the name of the mobile network operator, while the SERVICE column
indicates whether the network provides GSM, 3G, 4G, or 5G capabilities. Finally, the
TIMESTAMP column indicates when the event occurred:

Figure 7.2 – Records of cellular registration

Now that we've learned how to extract basic cellular-related data, we will learn about
analyzing communications. In this chapter, we will focus on phone calls; email and
messaging will be discussed in more depth in Chapter 8, Email and Messaging Forensics.

164 Analyzing Connectivity Data

Analyzing the address book
Before we delve into the call history database, it's useful to introduce the AddressBook.
sqlite database, which contains the names and details of the contacts stored
on the device. The database is located at /private/var/mobile/Library/
AddressBook/ and contains two tables of interest – ABPerson and ABMultiValue.
The first contains the contact's name and additional metadata that is used by the device,
while the second table stores the actual data, such as phone numbers and email addresses.
The two tables are connected through a one-to-many relationship.

Now that we know the address book's basic structure, we can extract the data by running
the following query:

SELECT p.First AS "First Name",

 p.Last AS "Last Name",

 GROUP_CONCAT(c.value) AS "Contacts"

FROM ABPerson AS p

 LEFT JOIN ABMultiValue AS c

 ON c.record_id = p.rowid

GROUP BY p.rowid,

 p.first;

First, we must select the columns that are relevant to the first name and last name; then,
we must use the GROUP_CONCAT SQL function to aggregate all the contact data (phone
numbers, emails, and so on) into one column, Contacts. Then, we must use a JOIN
statement to establish a relationship between the ABPerson and ABMultiValue tables.

This query will extract a list of all the contacts that are stored in the address book, as
shown in the following screenshot:

Figure 7.3 – Records extracted from the address book

Introducing cellular forensics 165

Now that we've learned how to extract contact data, we can start analyzing the call log.

Analyzing the call log
All phone calls and FaceTime calls that have been placed, received, or missed are logged
in the CallHistory.storedata database, which is located at /private/var/
mobile/Library/CallHistoryDB/.

Tip
The CallHistory.storedata database was introduced in iOS 8.
Previously, the call log was located in the call_history.db file. Also,
keep in mind that the call history will only be available in an After First
Unlock (AFU) state. Before the first unlock, the data is stored in a temporary
file, called CallHistoryTemp.storedata.

The most important data, from a forensic perspective, is stored in the ZCALLRECORD
table, where you will find the following columns:

• The ZDATE column contains the timestamp of when the call occurred, in Mac
Absolute Time format.

• ZADDRESS indicates the phone number that was called or where the call originated
from if it was an incoming call.

• The ZLOCATION column stores the location, which is calculated from the phone
number.

• The ZDURATION column indicates the call duration, in seconds.

• The ZORIGINATED column indicates whether the call was incoming (0) or
outgoing (1).

• The ZANSWERED column indicates whether an incoming call was answered (1) or
not (0).

• The ZSERVICE_PROVIDER column shows the name of the service that generated
the call. Typically, this will show com.apple.Telephony for traditional calls or
com.apple.FaceTime for FaceTime calls.

The following SQL query will extract meaningful data from the ZCALLRECORD table:

SELECT

DATETIME(ZDATE + 978307200, 'unixepoch', 'localtime') AS "Date/
Time",

ZADDRESS AS "Phone Number",

166 Analyzing Connectivity Data

ZLOCATION AS "Location",

ZDURATION AS "Call in Seconds",

CASE

WHEN ZORIGINATED = 0 THEN "Incoming"

 WHEN ZORIGINATED = 1 THEN "Outgoing"

END AS "Call Direction",

CASE

 WHEN ZANSWERED = 0 AND ZORIGINATED = 0 THEN "Call missed"

 WHEN ZANSWERED = 1 AND ZORIGINATED = 0 THEN "Call
answered"

END AS "Call Status",

ZSERVICE_PROVIDER AS "Service Provider"

FROM ZCALLRECORD;

The results of this query are shown in the following screenshot:

Figure 7.4 – Data extracted from the call log

By now, you should have a general idea of how to parse through the contacts that
are stored on a device and how to analyze the call log. Now, let's learn about
networking forensics.

Analyzing networking data 167

Analyzing networking data
Modern smartphones rely more than ever on a networking connection to perform their
tasks and enrich the user's experience. At the beginning of this chapter, we discussed
cellular-related artifacts; now, we will focus on Wi-Fi connections before discussing
network usage in general.

Analyzing the networking data that's provided by an iOS device can give the investigator
a precise idea of what services and applications are consuming bandwidth, and which
networks the device is connected to.

We'll introduce the topic by learning how to extract some basic networking-related data
from a full filesystem.

Airplane mode
To detect if the device was placed in airplane mode or not, you can examine the com.
apple.radios.plist file, which is located at /private/var/preferences/
SystemConfiguration/. The PLIST contains an AirplaneMode key with a value of
true or false.

Wi-Fi MAC address
The MAC address of the wireless network interface within the device can be found by
analyzing the NetworkInterfaces.plist file, which is located at /private/var/
preferences/SystemConfiguration/. The IOMACAddress key indicates the
desired value. Note that each iOS device has more than one networking interface and that
each of those has a unique MAC address.

Known Wi-Fi networks
A list of known wireless networks is stored in the /private/var/preferences/
SystemConfiguration/com.apple.wifi.plist file. This PLIST contains a key
list of known networks, which is also an array of items:

• The SSID_STR key contains a user-readable SSID string that identifies the network.

• The BSSID key indicates the MAC address of the access point.

168 Analyzing Connectivity Data

• The lastJoined key stores a timestamp of the last time the user manually
accessed the network.

• The lastAutoJoined key indicates the last time the device automatically
connected to the wireless access point:

Figure 7.5 – The com.apple.wifi.plist showing details of known networks

Analyzing networking data 169

Now that we know how to analyze the basic networking data on the device, let's take a
closer look at network usage artifacts.

Analyzing network usage
Dissecting which services or applications are using the network can help the investigator
identify any abnormal processes, such as malware running on the device.

Data usage on iOS devices is stored in two different files:

• The CurrentPowerLog.PLSQL database, which can be found in /private/
var/containers/Shared/SystemGroup/<GUID>/Library/
BatteryLife/, contains several tables of interest. By correlating the data from
different tables, the examiner can extract precise data usage for each process, both
from the Wi-Fi interface and the WAN interface. The caveat here is that this
database only stores process data for approximately 24 hours.

• The DataUsage.db database, which can be found in /private/var/
wireless/Library/Databases/DataUsage.sqlite, contains two
significant tables – ZPROCESS and ZLIVEUSAGE. The first stores the app's name,
the app bundle, and the associated process, along with its timestamp; the second
table stores the data that's coming in and out of the WAN interface for each process.
Although this database will generally store several weeks' worth of data, keep in
mind that, from research that has been carried out, it seems that data coming in and
out of the Wi-Fi interface is not logged.

These databases can help the investigator determine not only which processes were
using the network, but also whether a subject was using an application at a certain
moment in time.

Process and network usage data can be extracted from the DataUsage.db database
by running the following query:

SELECT

 DATETIME(ZPROCESS.ZTIMESTAMP+ 978307200,
'UNIXEPOCH') AS "PROCESS TIMESTAMP",

 ZPROCESS.ZPROCNAME AS "PROCESS NAME",

 ZPROCESS.ZBUNDLENAME AS "BUNDLE ID",

 ZLIVEUSAGE.ZWWANIN AS "WWAN IN",

 ZLIVEUSAGE.ZWWANOUT AS "WWAN OUT"

170 Analyzing Connectivity Data

 FROM ZLIVEUSAGE

 LEFT JOIN ZPROCESS ON ZLIVEUSAGE.ZHASPROCESS = ZPROCESS.Z_
PK;

The following screenshot shows the output; it includes some valuable data for the
investigator, especially if application usage is of interest in an investigation:

Figure 7.6 – The query results showing the processes running on the device and their data usage

In the next section, we'll introduce Bluetooth forensics.

Introducing Bluetooth forensics
Using Bluetooth technology, users can transfer data between different devices and attach
headphones, speakers, or any kind of wireless device to their smartphone. Typically, iOS
devices operate as Class 2 Bluetooth devices, which means they can operate at a range of
approximately 10 meters (33 feet).

From a forensic viewpoint, iOS devices maintain the following:

• A list of low-energy Bluetooth devices that can connect to the user's device, also
called paired devices. These are stored in the /private/var/containers/
Shared/SystemGroup/<GUID>/Library/Database/com.apple.
MobileBluetooth.ledevices.paired.db database, under the
PairedDevices table. This table maintains a list of devices, their names, their
Media Access Control (MAC) addresses, and their last-seen timestamps.

• Other Bluetooth paired devices (not just low-energy), which are stored in the /
private/var/containers/Shared/SystemGroup/<GUID>/Library/
Preferences/com.apple.MobileBluetooth.devices.plist file. This
property list maintains a list of device names and last-detection times.

Introducing Bluetooth forensics 171

• A list of seen Bluetooth devices, which are other available Bluetooth-enabled devices
that were close to the device but that did not connect. These devices can be found
in the /private/var/containers/Shared/SystemGroup/<GUID>/
Library/Database/com.apple.MobileBluetooth.ledevices.
other.db database, under the OtherDevices table.

• A detailed log of Bluetooth-related events, such as connection and disconnection
events. These are stored in the knowledgeC.db database.

As the first three files are trivial to query, we'll concentrate on extracting Bluetooth
events from the /private/var/mobile/Library/CoreDuet/Knowledge/
knowledgeC.db database, which we introduced in Chapter 5, Pattern-of-Life Forensics.

First, we must select the start and end dates for the events from the ZOBJECT
table. Then, we must filter down the results by searching for the /bluetooth/
isConnected stream. We must extract the event status and device details from the
ZSTRUCTUREDMETADATA table. Finally, we must order the results chronologically.

The final query looks like this:

SELECT

DATETIME(ZOBJECT.ZSTARTDATE + 978307200, 'unixepoch',
'localtime') AS "Start",

DATETIME(ZOBJECT.ZENDDATE + 978307200, 'unixepoch',
'localtime') AS "End",

CASE

 WHEN ZOBJECT.ZVALUEINTEGER = 0 THEN "Disconnected"

 WHEN ZOBJECT.ZVALUEINTEGER = 1 THEN "Connected"

END AS "Status",

ZSTRUCTUREDMETADATA.Z_DKBLUETOOTHMETADATAKEY__ADDRESS AS
"Address",

ZSTRUCTUREDMETADATA.Z_DKBLUETOOTHMETADATAKEY__NAME AS "Device"

FROM ZSTRUCTUREDMETADATA

LEFT JOIN ZOBJECT ON ZSTRUCTUREDMETADATA.Z_PK = ZOBJECT.
ZSTRUCTUREDMETADATA

WHERE ZOBJECT.ZSTREAMNAME = "/bluetooth/isConnected"

ORDER BY "Start" ASC;

172 Analyzing Connectivity Data

Once the query completes, the investigator can retrieve the list of events that were logged
every time the device connected or disconnected from a Bluetooth-enabled device, along
with the device's MAC address; the results are shown in the following screenshot:

Figure 7.7 – The query displaying Bluetooth connection events

Bluetooth artifacts can be an essential part of an investigation. By leveraging data about
paired or seen devices, the investigator can assess not only whether the device was in use
and connected to a certain device, but also put the owner in an approximate location at a
point in time, if the location of the Bluetooth device is known. In the next section, we'll
introduce Safari forensics.

Understanding Safari forensics
Analyzing artifacts that have been left by internet browsing activity is typically a crucial
aspect of mobile forensic investigations. Almost every activity a suspect performs while
using a browser on a mobile device leaves a trace on the device itself, including, of course,
searching for information and browsing through web pages.

In this section, we'll focus on the browser that is built into all iOS devices, Safari. Keep in
mind that dozens of third-party browsers can be installed on a device, such as Chrome,
Firefox, and Opera: it's important to review these applications and analyze their artifacts
as they could potentially contain important data. We'll learn how to analyze third-party
applications in Chapter 10, Analyzing Third-Party Apps.

Browsing history is likely the most commonly recovered item, but other files should be
reviewed too. Typically, the following data can be recovered by analyzing Safari artifacts:

• Browsing history

• Open/private tabs

Understanding Safari forensics 173

• Bookmarks/saved pages

• Cookies

• Cache files

Most of Safari's artifacts are stored in /private/var/mobile/Library/Safari/.
Within this folder, you will find the following relevant files:

• The Bookmarks.db database, which contains the titles and URLs of pages that
were added to Safari's bookmarks. The bookmarks table contains a title
column, which identifies the title of the web page; a url column, which stores the
URL; and several columns that relate to iCloud's syncing technology. Web pages
that are added to the Reading List are also stored in this file.

• BrowserState.db, which contains two tables – tabs, which describes the
current state of open tabs within Safari, and tab_sessions, which contains a
record for each open tab and a corresponding binary BLOB that contains session
data, such as previously browsed pages within that tab. The tabs table contains
columns such as title, url, and last_viewed_time, which describe the open
tab. Keep in mind that private tabs will also be stored in this table; these can be
identified by checking the flag value of the private_browsing column.

• The CloudTabs.db file, which stores open tabs across all iCloud synced devices.

• The History.db database, which stores Safari browsing history. We'll take an
in-depth look at this in the next section.

So far, we have seen the most common sources of evidence for Safari browsing. However,
other Safari-related artifacts could contain traces related to user activity, such as session
cookies and the cache:

• /private/var/mobile/Containers/Data/Application/GUID/
Library/Caches/com.apple.mobilesafari/

This folder contains any data that was cached by Safari. The cache.db database
should always be analyzed since it could contain traces of user navigation, even
if the browsing history was deleted. Cached data is typically stored within the
database as a BPLIST and should be exported and converted into an XML-encoded
PLIST to be manually analyzed.

174 Analyzing Connectivity Data

• /private/var/mobile/Containers/Data/Application/GUID/
Library/Cookies/Cookies.binarycookies

Safari cookies are stored in this file, in binary format. To understand the format
specification, please refer to the following link: https://github.com/
libyal/dtformats/blob/main/documentation/Safari%20Cookies.
asciidoc. Cookies can also be extracted using automated scripts, such as the
Safari-Binary-Cookie-Parser Python script by Mari DeGrazia. It can be
downloaded from https://github.com/mdegrazia/Safari-Binary-
Cookie-Parser.

• /private/var/mobile/Containers/Data/Application/GUID/
Library/Safari/

This folder should be analyzed as it contains several useful files, such as Safari
thumbnails, preferences, auto-fill data, and a downloads list.

Finally, let's cover two different ways of analyzing Safari browsing history.

Analyzing Safari history
As we learned earlier, Safari stores browsing history in the /private/var/mobile/
Library/Safari/History.db database. It's important to understand that this file
doesn't just store browsing history from the local device – it also contains data that's been
synced from iCloud, such as the browsing history from other devices. It's the examiner's
job, when analyzing this data, to dissect which websites were visited on the device that is
being examined and what data has been synced from different devices.

The following screenshot shows a query example that extracts all the relevant data and the
resulting records:

https://github.com/libyal/dtformats/blob/main/documentation/Safari%20Cookies.asciidoc
https://github.com/libyal/dtformats/blob/main/documentation/Safari%20Cookies.asciidoc
https://github.com/libyal/dtformats/blob/main/documentation/Safari%20Cookies.asciidoc
https://github.com/mdegrazia/Safari-Binary-Cookie-Parser
https://github.com/mdegrazia/Safari-Binary-Cookie-Parser

Understanding Safari forensics 175

Figure 7.8 – Analyzing the browsing history of History.db

Note that the history_visits table has an origin column, which indicates whether
the website was synced from iCloud (1) or not (0).

This database is not the only location where browsing history is stored; essential data can
also be found in the knowledgeC.db database. Although it only stores about 1 months'
worth of data, knowledgeC.db will still contain details about visited web pages, even if
the user chooses to delete the browsing history.

The following query will extract Safari events from the ZOBJECT table within the
knowledgeC.db database:

SELECT

 DATETIME(ZOBJECT.ZSTARTDATE+978307200,'UNIXEPOCH') AS
"DATE",

 ZSTRUCTUREDMETADATA.Z_DKSAFARIHISTORYMETADATAKEY__TITLE
AS "TITLE",

 ZOBJECT.ZVALUESTRING AS "URL",

 ZOBJECT.ZSECONDSFROMGMT/3600 AS "GMT OFFSET"

 FROM ZOBJECT

 LEFT JOIN

 ZSTRUCTUREDMETADATA

 ON ZOBJECT.ZSTRUCTUREDMETADATA =

176 Analyzing Connectivity Data

ZSTRUCTUREDMETADATA.Z_PK

 LEFT JOIN

 ZSOURCE

 ON ZOBJECT.ZSOURCE = ZSOURCE.Z_PK

 WHERE

 ZSTREAMNAME IS "/safari/history"

ORDER BY DATE ASC;

First, we must select the timestamp of when the browser event occurred and transform it
into a readable string by using the DATETIME function. Then, we must perform a JOIN
on the ZSTRUCTUREDMETADATA table to extract the title of the web page. After that,
we must select the URL and calculate the GMT offset. Finally, we must order the results
chronologically.

The following screenshot shows the results of this query:

Figure 7.9 – Analyzing the browsing history of KnowledgeC.db

When analyzing the user's browsing history, the investigator should always examine both
databases since one of them could potentially contain unique data.

Understanding Safari forensics 177

Introducing private browsing
To finish this chapter, we will introduce private browsing, a feature that Apple introduced
in iOS 5. When this feature is active, the details of the user's browsing history are not
stored and the websites that have been visited are not synced to iCloud.

As stated in Apple's official documentation, "Safari won't remember the pages you
visited, your search history, or your AutoFill information AFTER you close a tab in
private browsing mode."

Theoretically, this poses a problem from a forensic perspective as both History.db and
KnowledgeC.db do not store this data. There are, however, other options:

• You can analyze the cookies that are stored on the device. Safari's web cache could
also reveal traces of websites that were browsed with private browsing active.

• The BrowserState.db database stores details of active tabs, including private
tabs. For each tab, there is an entry in the tab_sessions table that contains a
binary PLIST. Converting this BPLIST into XML format will allow the investigator
to parse through the file, which contains the history of the pages that were browsed
within that tab. This will only work if the private tab is still open in Safari.

• As we learned in the previous chapters, deleted data is not permanently removed
from a SQLite database – it is merely marked as deleted. By using forensic tools,
it is possible to recover deleted records from the BrowserState.db database,
which may include details of tabs that have been opened in private mode. To learn
how to attempt data recovery from SQLite databases, please refer to Chapter 4,
Working with Common iOS Artifacts.

Internet browsing artifacts are an important part of any mobile forensics investigation.
Analyzing the browsing history may provide some insight, but accessing the data that's
relevant to private internet browsing can be far more enlightening, revealing any activity
that the user wanted to keep hidden.

178 Analyzing Connectivity Data

Summary
In this chapter, we learned about connectivity data and how iOS devices communicate
through cellular, Wi-Fi, and Bluetooth technologies.

First, we introduced cellular forensics and learned how to extract cellular-related data
from an iOS extraction, such as the device's IMSI and IMEI codes. Then, we analyzed
the PowerLog to view the relevant events, such as the device registering with the
cellular network.

After that, we focused on phone calls and learned how to extract contact data from
the address book, as well as how to access the call log, which contains details of all
incoming and outgoing communications, including FaceTime videocalls. Then, we
introduced the topic of network usage and learned which queries allow an investigator
to see which processes were running on a device, as well as how much networking data
they were consuming.

Finally, we learned about Safari forensics. We took an in-depth look at where common
Safari artifacts are located and how to analyze browsing history through the History.db
and KnowledgeC.db databases. We also briefly discussed some options for recovering
data in terms of private browsing.

In the next chapter, we will learn about email and messaging forensics.

8
Email and Messaging

Forensics
In the previous chapter, we discussed artifacts related to connectivity and learned how an
investigator can leverage such data to understand who a user has been in contact with,
how and when network data was used, and what websites the user visited. In this chapter,
we will focus on email and messaging forensics.

Any investigation of a mobile device usually includes the search and analysis of messaging
artifacts, as they can contain invaluable evidence: emails, text messages, and instant
messaging can be used to transmit and receive all kinds of data, such as passwords, notes,
confessions, threats, intellectual property, and multimedia files. In this chapter, we will
learn where this evidence is stored, what an investigator can expect to find, and how to
parse through the artifacts.

We'll begin the chapter with an introduction to email forensics with a focus on the Apple
Mail app. We will learn where emails are stored and how to analyze them. Then, we
will learn all about messaging forensics, starting with the analysis of SMS messages and
iMessage. We will also understand how to investigate third-party messaging apps, such
as WhatsApp, Telegram, and Signal. Finally, in the last part of the chapter, we'll look into
recovering deleted messages.

180 Email and Messaging Forensics

In this chapter, we will cover the following topics:

• Introducing email forensics

• Understanding messaging forensics

• Introducing third-party messaging apps

• Recovering deleted messages

Introducing email forensics
In the first part of this chapter, we will introduce email forensics and we will focus on the
Apple Mail application. It's safe to say that Apple Mail is certainly the most popular email
client on iOS devices; however, investigators should keep in mind that there are many
more third-party email apps available, such as Outlook, Spark, Gmail, and Airmail.
Analyzing third-party apps is covered in Chapter 10, Analyzing Third-Party Apps. A
comprehensive forensic analysis of email artifacts should entail analyzing Apple Mail and
any third-party clients that have been installed on the device.

The first step in investigating Apple Mail data is locating the artifacts: these can be found
in the folder located at /private/var/mobile/Library/Mail. Please note that a
full filesystem extraction is required. The following is a list of the most relevant files and
their description:

• For each email account configured on the device, there will be a corresponding
folder within the Mail folder; the folder's name refers to the account's unique
identifier. Each of these contains additional subfolders, such as Inbox, Sent,
Spam, and Drafts, which contain the actual emails, stored as Electronic Mail
(EML) files.

• The Envelope Index file is a SQLite database that contains a number of tables
that store metadata related to each email account that was configured on the device.

• The Protected Index database contains the actual data related to emails, such
as a summary of the email's body, subjects, and addresses.

• MailboxCollections.plist stores user preferences related to every account.

• The metadata.plist file stores a timestamp of when each mailbox was last
synced to the device.

Now that we know where email artifacts are located, we're going to jump right into these
SQLite databases to parse through email metadata and its content.

Introducing email forensics 181

Extracting email metadata
We're going to start by examining the Envelope Index database. The first table of
interest is mailboxes. As the name suggests, this table stores a list of all mailboxes
configured on the device. This includes different folders for a single account, such as
Important, Spam, Drafts, and Trash.

The following screenshot shows some sample data from the mailboxes table:

Figure 8.1 – The mailboxes table displayed in DB Browser

As you can see from the screenshot, each account is identified by a Universally Unique
Identifier (UUID) (in this example, 4FD35256-CE13-47FE-9840-EBEB5B9FD9C1) while
each folder is identified by a unique ROWID. By analyzing this table, the examiner can
gain a rough idea of how many, and which, email accounts are configured on the device.

The next step involves extracting and analyzing email metadata, which is stored in the
messages table. It's important to note that some of the data stored in this table will have
to be correlated to other records to make sense; in fact, the relationships between data
span not only between tables but also between the Envelope Index and Protected
Index databases.

The following is a list of columns of interest from a forensic viewpoint:

• The external_id column indicates the name of the EML file that contains the
actual email content.

182 Email and Messaging Forensics

• The sender column indicates the email address of the sender; this value needs to
be correlated to the records stored in the Addresses table, in the Protected
Index database.

• The subject column also needs to be correlated to the Subjects table in
Protected Index.

• The summary column, which is correlated to the Summaries table, stores the first
500 bytes of the email's content.

• The date_sent column stores a timestamp of when the email was sent.

• The mailbox column shows which account and folder contain the email.

• The read column will have a value of 1 if the email was read, or 0 if it was not.

The following query extracts all relevant metadata from the table:

SELECT

DATETIME(messages.date_sent, 'UNIXEPOCH', 'localtime') AS "DATE
/ TIME",

messages.sender AS SENDER,

messages.subject AS SUBJECT,

messages.summary AS SUMMARY,

messages.read AS READ,

mailboxes.url AS MAILBOX,

messages.external_id AS "EML FILENAME"

FROM messages

LEFT JOIN mailboxes ON messages.mailbox = mailboxes.ROWID

ORDER BY "DATE / TIME" ASC;

The result is shown in the following screenshot:

Introducing email forensics 183

Figure 8.2 – The SQL query extracts email metadata from the messages table

As you can see from the screenshot, the SENDER, SUBJECT, and SUMMARY columns
show a numerical value, which is the row ID for the relevant record in the Protected
Index database.

For example, the first record has a value of 1 in the SENDER column. If we view the
addresses table in DB Browser and filter the results based on ROWID, we can see that in
this sample data, the email sender refers to Google, so that particular email was sent from
no-reply@accounts.google.com.

Figure 8.3 – The addresses table filtered by ROWID

184 Email and Messaging Forensics

The same logic applies to the SUBJECT and SUMMARY columns. By now, you should have
a general understanding of how to extract email metadata. In the following section, we'll
learn how to analyze email content.

Analyzing email content
Identifying a specific email is a straightforward task as Apple Mail stores every email
as a separate file. When we previously extracted email metadata, we learned that the
messages table stores an external_id record for each email, which is the name of
an EML file. These files are stored in /private/var/mobile/Library/Mail/
MAILBOX-UUID/.

EML files can be opened on a macOS system using the Apple Mail desktop application,
and on Windows using Microsoft Outlook. It's also possible to view the email content in
any web browser, by renaming the file extension as .html.

To get the full content, including the email's headers, the EML file can be opened
using a text editor or it can be viewed through the terminal, as shown in the
following screenshot:

Figure 8.4 – An EML file viewed through the terminal showing the email's content

Understanding messaging forensics 185

Keep in mind that the content of an email is often split up between multiple EML
files; in such cases, the partial files must be merged into a single file in order to view
the entire email.

Now that we have learned where to look for email artifacts and how to analyze them, we
will focus on messaging forensics in the next part of the chapter.

Understanding messaging forensics
Short Message Service (SMS) messages and Instant Messaging (IM) chat applications,
such as WhatsApp or Telegram, may contain very important information that can aid any
kind of investigation.

Before we dive into the details of how to analyze this data, we'll briefly introduce the
different messaging solutions available on an iOS device:

• SMS is the traditional form of messaging, which uses the GSM/LTE cellular
network to deliver messages. The service allows the user to send and receive
messages of up to 160 characters, although messages can be concatenated to
support longer text. In SMS messaging, the message is sent from one phone
number to another.

• iMessage was introduced in iOS 5 and allows users to exchange instant messages
along with likes, emojis, reactions, and attachments. As iMessage is preinstalled
on every iOS device, it has a huge user base of more than 1.6 billion active users
worldwide. An iMessage account is not tied to a particular phone number, but it is
associated with an Apple ID; users can then send/receive messages through their
email address and phone number.

• Third-party IM applications have become the de facto platform for messaging.
These include apps such as WhatsApp, Telegram, Line, Viber, and Signal. From a
forensic viewpoint, these present a set of additional challenges, as these apps should
be regarded as cloud applications, so data can be stored both on the device and in
the cloud.

We'll start our analysis of messaging artifacts by looking at SMS and iMessage forensics.

186 Email and Messaging Forensics

Analyzing SMS and iMessage artifacts
Analyzing artifacts pertaining to SMS and iMessage chats is a straightforward task,
as these types of messages are both stored in the same SQLite database. In fact, these
messages are essentially the same from the user's perspective, and iOS stores them both in
the sms.db database, indicating whetherthe message is a regular SMS or an iMessage in
one of the table's columns.

The following is a list of artifacts related to SMS or iMessage messaging:

• The /private/var/mobile/Library/Preferences/com.apple.
madrid.plist property list contains a set of properties and user preferences
related to SMS, iMessage, and FaceTime. In particular, the plist contains a
dictionary under the allAliases key that indicates all the aliases connected to
the iMessage account, such as phone numbers and email addresses.

• /private/var/mobile/Library/Preferences/com.apple.
MobileSMS.plist stores preferences related to SMS and iMessage, including the
KeepMessageForDays key, which indicates the retention period. By default, this
is set to Forever.

• The /private/var/mobile/Library/SMS/Attachments/ folder, as the
name implies, contains attachments that were sent through MMS or iMessage, such
as photos, videos, and audio recordings.

• The /private/var/mobile/Library/SMS/Drafts/ folder stores draft
messages and pending messages (messages that the user sent but that iOS did not
send due to, for example, the absence of connectivity).

• The /private/var/mobile/Library/SMS/sms.db database stores all
metadata and content of all messages, SMS and iMessage.

• Messages received Before First Unlock (BFU) are stored in a temporary database,
which is located at /private/var/mobile/Library/SMS/sms-temp.db.

We're going to focus on the sms.db file to learn how to extract all messages and their
metadata from the message, chat_message_join, chat, and attachment tables.
The following SQL query will do the job:

SELECT

CASE when LENGTH(chat_message_join.message_date)=18 THEN

 datetime(chat_message_join.message_date/1000000000 +
978307200,'unixepoch','localtime')

 when LENGTH(chat_message_join.message_date)=9 THEN

 datetime(chat_message_join.message_date +

Understanding messaging forensics 187

978307200,'unixepoch','localtime')

 else 'NA'

END as "Message Date",

message.text,

message.service,

message.account,

chat.account_login,

chat.chat_identifier,

CASE when LENGTH(message.date_read)=18 THEN

 datetime(message.date_read/1000000000 +
978307200,'unixepoch','localtime')

 when LENGTH(message.date_read)=9 THEN

 datetime(message.date_
read+978307200,'unixepoch','localtime')

 else 'NA'

END as "Date Read",

CASE when message.is_read=1

 THEN 'Incoming'

 when message.is_read=0

 THEN 'Outgoing'

END AS "Message Direction",

CASE when LENGTH(chat.last_read_message_timestamp)=18 THEN

 datetime(chat.last_read_message_
timestamp/1000000000+978307200,'unixepoch','localtime')

 when LENGTH(chat.last_read_message_timestamp)=9 THEN

 datetime(chat.last_read_message_timestamp +
978307200,'unixepoch','localtime')

 else 'NA'

END as "Last Read"

FROM message

left join chat_message_join on chat_message_join.message_
id=message.ROWID

left join chat on chat.ROWID=chat_message_join.chat_id

left join attachment on attachment.ROWID=chat_message_join.
chat_id

order by "Message Date" ASC;

188 Email and Messaging Forensics

Although that query may seem complicated, it's actually a lot easier if we break it down
into logical steps. Before we analyze the query, it may be useful to look at the result.

The following screenshot shows all the data spread across two rows, for better readability:

Figure 8.5 – Extracting message data from sms.db

The first thing to keep in mind is that since iOS 11, Apple started storing timestamps as
18-digit numbers, while previously, message timestamps were only nine digits long. This
means that the sms.db database will most likely contain both nine-digit and 18-digit
timestamps. Our query begins by verifying the length of the timestamp and displaying
the date and time of when the message was sent accordingly. Then, we extract the text
column and the service column, which indicates whether the message is a traditional
SMS, or an iMessage. The account and account_login columns show the phone
number or email address that the user was using to send or receive the message. The
chat_identifier column stores the phone number or email address of the person the
user was communicating with. Finally, the Date Read, Message Direction, and
Last Read columns are self-explanatory.

Introducing third-party messaging apps 189

During an investigation that involves SMS and iMessage forensics, the Drafts and
Attachments folders should not be overlooked, as these may contain evidence that
is not tracked by the sms.db database; in fact, multimedia attachments shared through a
message may contain additional metadata, such as the location where a photo was taken.
We'll learn how to analyze multimedia files in Chapter 9, Photo, Video, and
Audio Forensics.

In the next section, we'll learn how to analyze chats from third-party
messaging applications.

Introducing third-party messaging apps
Third-party messaging applications allow users to keep in touch with their contacts, and
share photos, videos, and audio messages. Many of these apps also allow users to send
likes, emojis, animations, and any kind of attachment.

Most forensic tools do an excellent job at analyzing and parsing through these apps;
however, the examiner should have a basic understanding of how these applications work,
how they store their data, where they store it, and how to extract it. In this section, we'll
focus on three of the most popular messaging apps: WhatsApp, Telegram, and Signal:

• With over 2 billion worldwide users, WhatsApp is definitely one of the most
popular IM apps. From a forensic perspective, the app stores its data on the device,
in unencrypted form. Chats and messages are not stored on WhatsApp's servers;
however, if this feature is enabled, an encrypted backup can be stored on iCloud.
Artifacts related to WhatsApp can be found in /private/var/mobile/
Containers/Data/Application/<APP_GUID>/ and in /private/var/
mobile/Containers/Shared/AppGroup/<APP_GUID>/. The investigator
can expect to extract chats, messages, media files, blocked contacts, call logs, and
application logs. The main databases of interest are ChatStorage.sqlite,
which contains the actual chats in the ZWAMESSAGE table, and CallHistory.
sqlite, which stores data pertaining to WhatsApp voice calls and video calls.
These databases are also included in a local (iTunes) backup.

190 Email and Messaging Forensics

• Telegram is a multi-platform IM application that is compatible with a huge list
of devices, including desktop computers. Chats and messages are stored both on
the local device and on Telegram's servers. There is also the option of creating
secret chats, where data is never stored on the application's servers. Telegram
artifacts are not included in local or iCloud backups but are only available in a
full filesystem acquisition. Artifacts and logs can be found in /private/var/
mobile/Containers/Data/Application/<APP_GUID>/ and /private/
var/mobile/Containers/Shared/AppGroup/<APP_GUID>/. Chats and
messages, including secret chats, can be found in the db_sqlite database.

• Signal is a secure, encrypted messaging app available for mobile devices and
desktop computers, including Linux. All communications on Signal, such as
messages, group chats, photos, and file transfers, are end-to-end encrypted.
Signal conversations are not stored on their servers, they're not available in a
local backup, and it's not possible to back up the data to iCloud. Signal's database
is stored on the local device in encrypted form. The only way to access these
artifacts is by performing a full filesystem acquisition and decrypting the keychain
to access the encryption key, which will in turn decrypt the database. Log files
and user preferences are stored in /private/var/mobile/Containers/
Data/Application/<APP_GUID>/. The encrypted database, signal.
sqlite, can be found in /private/var/mobile/Containers/Shared/
AppGroup/<APP_GUID>/.

In this section, we briefly discussed third-party messaging applications and learned how
and where these apps store conversation data. In the final part of this chapter, we'll learn
how to attempt the recovery of deleted messages.

Recovering deleted messages
One of the most common tasks in a mobile device investigation is to attempt the recovery
of data that was deleted by the user, such as chats and messages, as these may contain
invaluable evidence.

In this chapter, we learned that SMS messages and chats from third-party applications
are all stored in SQLite databases; this means that the ability to recover deleted chats
effectively depends on the possibility of recovering any records from the SQLite database.

In Chapter 4, Working with Common iOS Artifacts, we discussed several options for the
recovery of deleted records, such as the following:

• Parsing through the database using a hex viewer

• String carving

Recovering deleted messages 191

• Analyzing the Write Ahead Log (WAL) files

• Using forensic tools such as FQLite to recover data from free blocks and
unallocated space

All of these solutions can be effective in recovering deleted messages, but only if the
database was not vacuumed after the records were purged from the database.

Tip
It's important to note that to attempt data recovery, the database should be
extracted through a full filesystem acquisition and not a logical acquisition, as
the latter will contain a vacuumed copy of the database, which is rebuilt from
scratch during the backup process. Research has also shown that since iOS 11,
the sms.db database is regularly vacuumed, so SMS messages and iMessages
may be purged before the examiner has the possibility of acquiring the device.

In the following section, we'll introduce an open source tool that can be used to recover
deleted messages.

Detecting deleted messages using Mirf
There are some occasions where recovering deleted messages is simply not possible;
however, in such circumstances, it may still be possible to detect the fact that the user
deleted a message, even if its content cannot be recovered.

Chats and messages are stored in SQLite tables as individual records; each record is
identified through a unique, progressive identifier called a primary key. For example,
in the following screenshot, which contains an extract of data from the WhatsApp
ChatStorage.sqlite database, individual messages are referenced using an identifier
stored in the Z_PK column:

Figure 8.6 – The Z_PK column stores a unique identifier for each message

192 Email and Messaging Forensics

By analyzing the values in the Z_PK column, the examiner can look out for any missing
records: in the previous example, the record associated with value 5 is missing. This is
sufficient to state that a message has been deleted. Even if it is not possible to recover the
actual message, it may be possible to deduce the timeframe of when the message was sent
or received, by looking at the timestamps of the previous and next records. Thankfully,
this process can be automated by using an open source Python script called Missing
Record Finder for SQLite Databases (Mirf), which can help detect if any rows of data
were deleted by discovering gaps.

The following steps illustrate the process of downloading Mirf and running the tool to
detect the deleted message from the previous example:

1. To download Mirf, head over to its GitHub repository located at https://
github.com/sheran/mirf and download the latest version as a ZIP archive or
by cloning the repository by running the git clone command.

2. Install the required packages by running the following command from a terminal:

pip install -r requirements.txt

3. Next, run Mirf by running the ./mirf.py command followed by the path to the
database that should be analyzed.

4. The tool will prompt you to specify the name of the table that contains the messages.
In our example, this is the ZWAMESSAGE table that stores WhatsApp chats.

5. When the tool finishes the process, it will display a list of missing records from the
table of choice.

If Mirf is used to analyze artifacts pertaining to SMS messages or iMessages,
the tool will also automatically calculate the timeframe of when the deleted message
was sent or received.

The following screenshot shows the tool's output when run on the sms.db database:

https://github.com/sheran/mirf
https://github.com/sheran/mirf

Summary 193

Figure 8.7 – Running Mirf to detect deleted messages

In this case, one missing record is identified, including date ranges in the UTC time zone
and the missing record number.

Summary
In this chapter, we learned all about how iOS stores emails and messages on the device
and what artifacts an investigator can expect to find.

First, we introduced the Apple Mail application and discovered where emails are stored.
We analyzed the relevant SQLite databases to extract email metadata and learned how to
parse through EML files to view the email's body.

Later in the chapter, we focused on messaging forensics by looking at how iOS stores
SMS and iMessage data on the sms.db database and how a SQL query can be used to
extract all messages and their metadata. Then, we introduced the topic of third-party
messaging applications and focused on three of them: WhatsApp, Telegram, and Signal.
We learned what data can be extracted from these apps and which are the most relevant
SQL databases.

Finally, in the last section of this chapter, we discussed different options to attempt the
recovery of deleted messages, such as using an open source tool called Mirf, which can
detect gaps between records in a SQL table.

In the next chapter, we will learn all about photo, video, and music forensics.

9
Photo, Video, and

Audio Forensics
In the first few chapters of the book, we focused on the identification and analysis of
mobile evidence stored in system-generated artifacts such as databases, PLISTs, and
log files. However, any type of investigation will also typically involve analyzing user-
generated content found on a device, such as media files.

A modern iOS device can contain tens of thousands of media files, and each of these files
is associated with unique metadata that can be critical to an investigation. In this chapter,
we will learn how to identify and analyze multimedia content such as photos, videos, and
audio files.

We will start the chapter with an introduction to media forensics and discuss where
photos, videos, and audio recordings are stored on an iOS device. Then, we'll learn all
about analyzing media metadata to gain meaningful insights, both from the file itself and
from the corresponding databases. In the last part of the chapter, we will learn how to
analyze user behavior to find out what media the user has accessed or watched through
Apple apps such as Music and Safari, and third-party apps such as Spotify or Netflix.

196 Photo, Video, and Audio Forensics

In this chapter, we will cover the following topics:

• Introducing media forensics

• Analyzing photos and videos

• Introducing EXIF metadata

• Analyzing user viewing activity

Introducing media forensics
Media forensics can be defined as the process of locating, analyzing, and extracting
meaningful metadata from any kind of multimedia object, such as an image or a video.
Modern iOS devices such as the iPhone 13 have huge storage capacities (the base model
has 128 GB of storage), and this allows them to potentially store tens of thousands of
media files. Each of these is linked to particular metadata that may give an investigator a
lot more information than the file itself.

Although it may be tempting to think of multimedia assets merely as photos or videos,
iOS devices, in reality, handle a lot more than that; the following is a list of common
media assets that can be found on an iOS device:

• Camera roll photos, videos, and live photos

• Saved photos and videos

• Screenshots

• Audio recordings and music

• Media files received from third-party apps (such as WhatsApp and Telegram)

• Streamed content

It's important to understand that when an examiner is tasked with analyzing any kind of
media file from a mobile device, the focus shouldn't be solely on where the file was located
but rather on how the media object got there.

By analyzing media files, their metadata, and iOS-related artifacts, the investigator will be
able to answer questions such as the following:

• Was a particular photo taken from the device's camera?

• What was the location where the photo was taken?

• Was a video file received from a messaging app?

Introducing media forensics 197

• When was a media file last modified?

• What does a media file say about the user?

We're going to start by highlighting some of the most common locations where media-
related artifacts are located:

• /private/var/mobile/Media/DCIM/1**APPLE/: This folder stores photos
and videos that were created by the user or saved to the device. Typically, images
will be stored in JPG, PNG, or HEIC format, and videos will be stored as MP4 or
MOV files.

• /private/var/mobile/Media/PhotoData/: The PhotoData folder stores
several artifacts related to the media metadata, such as the Photos.sqlite
database, thumbnails (which are stored in /private/var/mobile/Media/
PhotoData/Thumbnails/V2/DCIM/1**APPLE/IMG_****.JPG/****.
JPG), and photo album data. Generally, this folder will be the primary source of
evidence for any kind of media file stored on the device. We'll take an in-depth look
at this folder in the next section.

• /private/var/mobile/Media/PhotoData/PhotoCloudSharingData/:
The PhotoCloudSharingData folder contains artifacts pertaining to Shared
Albums, an iOS feature that allows users to easily share photo collections. Each
shared album will have a subfolder that contains an Info.plist file, which
contains album metadata (the name, the owner, and more), and DCIM_CLOUD.
plist, which stores the number of photos in the album.

• /private/var/mobile/Media/Recordings/*: This folder contains user-
recorded voice memos.

198 Photo, Video, and Audio Forensics

The following screenshot shows which files and folders can be found in the PhotoData
folder:

Figure 9.1 – The PhotoData folder contains media metadata

Each media asset has two different kinds of metadata associated with it – EXIF metadata,
which contains details such as the device that generated the image or the location, is
stored within the file itself, while iOS-generated metadata is stored in the Photos.
sqlite database.

In the following section, we'll analyze the database to learn how to extract meaningful
information for each image or video that is stored on the device.

Analyzing photos and videos
Every time a photo or video is taken through a device's camera or saved onto a device,
iOS analyzes it and generates a multitude of metadata, which is stored in the Photos.
sqlite database.

The following is a list of events that occur during the process:

1. First, the newly created photo or video is saved in /private/var/mobile/
Media/DCIM/1**APPLE/ as a JPG, HEIC, MP4, or MOV file. The folder name
will iterate upward (100APPLE, 101APPLE, 102APPLE, and so on) as more
photos or videos are stored on the device.

Analyzing photos and videos 199

2. Additionally, the PreviewWellImage.tiff image is created and stored in
/private/var/mobile/Media/PhotoData/MISC/. This image is the
thumbnail that is displayed in the Photos app where the most recent image is
displayed.

3. As the new media is stored, a new entry is created in the Photos.sqlite
database, in the ZGENERICASSET table. Since iOS 14, this table is now called
ZASSET. The new record will contain metadata such as the date and time when the
content was saved, the date and time of when it was last edited, the filename, and
the color space.

4. In the background, iOS starts processing the newly created media by running
several algorithms, such as facial and object recognition. If a name has been
associated with a face that iOS recognizes in the media file, the photo or video will
also be displayed in the People album, in the Photos app. The results of the analysis
are then stored in the Photos.sqlite database and in mediaanalysis.db,
which can be found in /private/var/mobile/Media/MediaAnalysis/.

As you can see, there's a lot going on! Now that we know where the artifacts are located,
we will focus on analyzing photos and videos.

Understanding Photos.sqlite
With over 60 tables packed full of data, the Photos.sqlite database is one of the
largest datasets that can be found in an iOS acquisition. A detailed analysis of this
database is beyond the scope of this book, so we'll focus on extracting the most important
pieces of metadata from the ZGENERICASSET (ZASSET in iOS 14 and 15) table.

Once you've opened the file with your tool of choice, such as DB Browser for SQLite, run
the following query:

SELECT

Z_PK,

DATETIME(ZDATECREATED + 978307200, 'UNIXEPOCH') AS "Created
date",

DATETIME(ZMODIFICATIONDATE + 978307200, 'UNIXEPOCH') AS
"Modified date",

DATETIME(ZTRASHEDDATE + 978307200, 'UNIXEPOCH') AS "Deleted
date",

ZFILENAME AS "File name",

ZDIRECTORY AS "Directory",

ZWIDTH AS "Width",

200 Photo, Video, and Audio Forensics

ZHEIGHT AS "Height",

ZHIDDEN AS "Hidden"

FROM ZGENERICASSET

ORDER BY Z_PK ASC;

The following screenshot shows the result of the query by running it on our example
dataset:

Figure 9.2 – The results of the query from the Photos.sqlite database

As you can see, the query extracts the list of all media stored on the device, including
metadata such as when the media object was created, when it was last modified, if and
when it was deleted, if the user chose to hide it, the width and the height, and of course,
the directory and the filename.

So far, we've only scratched the surface of Photos.sqlite, as this database has a lot
more to offer. By going deeper into the evidence and correlating data between different
tables, the examiner can leverage the metadata provided by iOS to gain insights such as
the following:

• Was the media asset shared? If so, when?

• Was a particular photo adjusted/corrected on the device?

• Was the photo taken on the device or did the user receive it?

• Which application received and stored the photo?

• How many times did the user view a media asset?

• Was the media asset added to a specific album?

Analyzing photos and videos 201

To extract all this data from the database, we're going to use a more complex SQL query
that was written by Scott Koenig (@Scott_Kjr). The query can be found on his blog:
theforensicscooter.com.

Tip
To gain a full understanding of how Photos.sqlite works and what data
can be found by delving into the database, you can refer to this article: Using
Photos.sqlite to Show the Relationships Between Photos and the Application they
were Created with?, DFIR Review, Koenig, S., 2021 (retrieved from https://
dfir.pubpub.org/pub/v19rksyf).

The following screenshot shows the query executed through DB Browser:

Figure 9.3 – The results of the query from the Photos.sqlite database

As you can see, this query provides a lot more data. The following is a list of the most
relevant columns and their descriptions:

• The query provides us with a Kind column, which indicates whether the media
asset is a photo or a video.

• The AlbumTitle column shows whether the asset belongs to a specific album,
such as the WhatsApp album.

http://theforensicscooter.com
https://dfir.pubpub.org/pub/v19rksyf
https://dfir.pubpub.org/pub/v19rksyf

202 Photo, Video, and Audio Forensics

• By looking at CreatorBundleID, the investigator can learn which application
on the device created the media asset – for instance, the com.facebook.
Messenger value is a clear indication that the media was received through the
Facebook app.

• EditorBundleID indicates which application edited the asset last – for example,
in the following screenshot, the com.apple.ScreenshotServicesService
value shows that a screenshot was taken on the device and that the screenshot utility
was used to edit the image:

Figure 9.4 – CreatorBundleID and EditorBundleID indicate where the asset originates from

• The SavedAssetType column indicates whether the asset was created on the
device or whether it was synced from another source.

• Favorite, Hidden_File, and TrashState indicate whether the media asset
was included in the Favorites album, whether the user opted to hide it, or whether it
was marked for deletion.

• The ShareCount and LastSharedDate columns indicate how many times a
particular media asset was shared and the timestamp of the last time it occurred:

Figure 9.5 – The ShareCount column indicates whether a media asset was shared with other devices

Introducing EXIF metadata 203

• By checking the Has_Adjustments column, the investigator can understand
whether the media asset was adjusted, edited, or cropped on the device.

• If location services were enabled, the Latitude and Longitude columns store
the coordinates of the location where a photo or video was taken.

• Finally, the UUID column indicates the asset's unique identifier.

As we can see from the result of this query, there is a significant amount of metadata
stored within the database; however, this is not the only source of media metadata. In the
following section, we'll focus on extracting information from the media file itself.

Introducing EXIF metadata
The Photos.sqlite database can be a huge source of metadata, but there may be some
occasions in which the database is not available, and the investigator only has access to
the media file. Thankfully, images and videos often contain embedded metadata, which is
known as Exchangeable Image File Format (EXIF).

EXIF metadata can provide a wealth of information to investigators, such as the following:

• The device model

• Camera settings

• Exposure and lens specifications

• Timestamps

• Location data

• Altitude and bearing

• Speed reference

204 Photo, Video, and Audio Forensics

When a photo or video is captured through an iOS device's built-in camera, EXIF
metadata is automatically added to the media asset. The following screenshot shows the
amount of metadata that can be extracted from a photo that was taken on an iPhone SE:

Figure 9.6 – EXIF metadata extracted from a photo that was captured on an iPhone

As you can see, by analyzing the EXIF metadata, we can learn that the photo was taken on
an iPhone SE, using the back camera. The camera's flash was set to Auto, but it didn't fire,
the shutter speed was automatically set to 1/1788, while the exposure time was 1/1789.
The timestamp indicates when the photo was taken, based on the device's time zone,
which is also indicated.

Analyzing user viewing activity 205

Metadata related to GPS is possibly even more useful; the iPhone automatically stored
the device's coordinates, altitude, bearing, and speed when the photo was captured. Of
course, this is dependent on Location Services being enabled on the device.

Tip
The investigator should always attempt to validate EXIF metadata: with iOS
15, Apple introduced the possibility of editing the file's location and capturing
the timestamp directly from within the Photos application. However, from
research that has been carried out, it seems that editing the metadata from the
Photos app only affects the data stored in the Photos.sqlite database,
while the EXIF metadata remains unchanged.

Although EXIF metadata can be extremely valuable for media assets created on a device,
it won't be as useful when dealing with photos or videos received through a third-party
application; most instant messaging apps, such as WhatsApp or Telegram, compress
images before transferring them, resulting in the EXIF data being stripped from the file.

Now that we know what EXIF metadata is, we'll learn which tools can be used to view it.

Viewing EXIF metadata
There are a number of free tools available to view a media asset's EXIF, although most
operating systems allow the user to view the data without installing any third-party tool.

On Windows, you can view a file's metadata by right-clicking on the media and selecting
Properties. Then, click on the Details tab and scroll down to view the EXIF data. The
exiftool free tool can also be used for the same purpose. It can be downloaded from
http://exiftool.org and is compatible with both Windows and macOS.

On macOS, you can view EXIF simply by opening the file using Preview. Once open, click
on Tools and select Show Inspector. Then, click on the Exif tab.

On most Linux distributions, the exif command-line tool can be used for this purpose.

By now, you should have a general understanding of what EXIF metadata is, how it can be
beneficial to an investigation, and how to analyze it.

Analyzing user viewing activity
So far, we have focused on analyzing photo and video media assets; however, the
investigator may want to understand not only what media was stored on a device but also
what media the user viewed.

http://exiftool.org

206 Photo, Video, and Audio Forensics

This may include any of the following:

• Audio/video streamed through Safari or other browsers

• Music played through Apple Music or third-party apps such as Spotify

• Videos played through third-party apps such as YouTube and Netflix

The KnowledgeC.db database, which we discussed in Chapter 5, Pattern-of-Life
Forensics, tracks most of the user's day-to-day activity, including events related to audio or
video playback.

The table of interest is the ZOBJECT table, which stores device events, organizing them
by stream name. Every time iOS detects that the user has initiated media playback, a /
media/nowPlaying event is triggered.

The following screenshot shows some example data from the KnowledgeC.db database,
analyzed using DB Browser:

Figure 9.7 – Media events extracted from the KnowledgeC.db database

By correlating the data from the ZOBJECT table with the metadata stored in
ZSTRUCTUREDMETADATA, the examiner can gain many useful insights, such as what
song the user was listening to, what video was streaming through Safari, or what show
they were binge-watching on Netflix.

The following query will extract all the relevant data from KnowledgeC.db:

SELECT

datetime(ZOBJECT.ZSTARTDATE+978307200,'UNIXEPOCH', 'LOCALTIME')
as "START",

Analyzing user viewing activity 207

datetime(ZOBJECT.ZENDDATE+978307200,'UNIXEPOCH', 'LOCALTIME')
as "END",

(ZOBJECT.ZENDDATE-ZOBJECT.ZSTARTDATE) as "USAGE IN SECONDS",

ZOBJECT.ZVALUESTRING,

ZSTRUCTUREDMETADATA.Z_DKNOWPLAYINGMETADATAKEY__ALBUM as "NOW
PLAYING ALBUM",

ZSTRUCTUREDMETADATA.Z_DKNOWPLAYINGMETADATAKEY__ARTIST as "NOW
PLAYING ARTIST",

ZSTRUCTUREDMETADATA.Z_DKNOWPLAYINGMETADATAKEY__GENRE as "NOW
PLAYING GENRE",

ZSTRUCTUREDMETADATA.Z_DKNOWPLAYINGMETADATAKEY__TITLE as "NOW
PLAYING TITLE",

ZSTRUCTUREDMETADATA.Z_DKNOWPLAYINGMETADATAKEY__DURATION as "NOW
PLAYING DURATION"

FROM ZOBJECT

left join ZSTRUCTUREDMETADATA on ZOBJECT.ZSTRUCTUREDMETADATA =
ZSTRUCTUREDMETADATA.Z_PK

left join ZSOURCE on ZOBJECT.ZSOURCE = ZSOURCE.Z_PK

WHERE ZSTREAMNAME like "/media%"

ORDER BY "START";

As you can see from the following screenshot, the query provides us with a wealth of
information, such as which app the user was using to view the media, the duration, and
the name of the song or video:

Figure 9.8 – Extracting media viewing data from KnowledgeC.db

It is worth noting here that KnowledgeC.db doesn't just store playback events
pertaining to media applications such as Apple Music or Spotify; it also logs any viewing
activity that occurs through the Safari browser, including content that was viewed in
private browsing mode.

208 Photo, Video, and Audio Forensics

Finally, if more context is required for an investigation, the CurrentPowerlog.PLSQL
database can be queried to extract insights on any app that is utilizing the device's
audio functions. In particular, the PLAUDIOAGENT_EVENTPOINT_AUDIOAPP
table will provide the app, service name, or bundle ID for the process that is using the
audio function.

By now, you should have a general understanding of what kind of media assets can be
found on a typical iOS acquisition, what metadata can be extracted from iOS and EXIF
artifacts, and how to analyze user viewing activity.

Summary
In this chapter, we learned all about photo, video, and audio forensics. First, we introduced
the concept of media forensics to learn which artifacts an investigator should expect to
find on an iOS device and where they are located.

Later on in the chapter, we focused on analyzing metadata from photos and videos. We
introduced the Photos.sqlite database and discussed different options to extract
data pertaining to the media files stored on the device. Then, we learned all about EXIF
metadata, how an investigation can benefit from such data, and how to extract it using
Windows, macOS, and Linux.

Finally, in the last section of this chapter, we discussed how to detect user viewing activity
by using the events logged in the KnowledgeC.db database.

In the next chapter, we will learn how to analyze third-party applications.

10
Analyzing

Third-Party Apps
The App Store, which was released in 2008, allows users to download third-party
apps on their iOS devices. As of 2021, there were more than 4.5 million apps available
for download. Once an app is available on the store, developers can publish updates
containing bug fixes or new features that will automatically be installed on the device.
This poses a problem from a forensic viewpoint, as many forensic tools aren't able to keep
up with the speed at which apps are updated, while some applications are simply not
supported altogether.

When a third-party application needs to be analyzed for an investigation, the examiner
will most likely have to resort to manually researching, validating, and analyzing the
artifacts, and this is exactly what we'll be discussing in this chapter.

210 Analyzing Third-Party Apps

We will start by learning how to understand which apps are installed on a device,
where they are located, and where the investigator should be looking for any artifacts.
Then, we will introduce dynamic application analysis and discuss several tools that can
be used for researching and validating purposes. Finally, we'll take an in-depth look
at some of the most popular third-party apps, such as Facebook, Twitter, Instagram,
YouTube, and others.

In this chapter, we will cover the following topics:

• Introducing iOS applications

• Dynamic application analysis

• Practical third-party applications forensics

Introducing iOS applications
In Chapter 1, Introducing iOS Forensics, we learned where iOS applications are stored and
how their data is structured into containers. We're going to build on that knowledge to
learn how to get a list of all the apps that are stored on a device and how to locate the data
container, which is where most of the artifacts are stored.

Every time an application is installed on a device, iOS generates a global unique
identifier (GUID) that uniquely represents the application. This GUID is also used in the
path to the application's containers:

• The application bundle container, which stores the app itself, is located at /
private/var/containers/Bundle/Application/<app-GUID>/.

• The application data container is located at /private/var/mobile/
Containers/Data/Application/<app-GUID>/.

In this chapter, we're going to focus on data containers, which typically have the following
directory structure:

Introducing iOS applications 211

Figure 10.1 – The data container's directory structure

The Documents folder contains user-created artifacts, the Library folder is used by the
application to store its data, settings, and preferences, the tmp folder stores any temporary
files, and the SystemData folder is typically empty.

As shown in the previous screenshot, the Applications folder contains a subfolder
for each app that is installed on the device; however, since the folders are named by the
application's GUID, it's impossible to understand which app is which simply by looking at
the directory's structure.

In the following sections, we'll learn how to associate an application with its GUID to
understand what apps are installed on a device.

212 Analyzing Third-Party Apps

Identifying installed applications
The applicationState.db database, which is located at /private/var/mobile/
Library/FrontBoard/, keeps track of Bundle IDs for any application that is installed
on the device, including deleted ones. By querying this database, the examiner can
understand not only what apps are currently installed on a device, but also where their
artifacts are located.

The database contains three tables of interest: application_identifier_tab,
key_tab, and kvs. The first table contains a list of applications that, at some point
in time, were installed on the device, identified by their Bundle ID, also called their
application identifier.

The following screenshot shows the table's content, based on our example dataset:

Figure 10.2 – The application_identifier table from applicationState.db

The kvs table contains two columns of interest: application_identifier, which
maps the record to the Bundle ID in the previous table, and a column named value,
which contains a binary BLOB.

Introducing iOS applications 213

The key_tab table is a guide that describes the content of the BLOB. Delving deep into
this table is beyond the scope of this section, but keep in mind that a key_tab value of 1
indicates that the corresponding application is still installed on the device.

Based on this logic, the following SQL query will extract the Bundle IDs of all the
applications that are currently installed on the device:

SELECT

application_identifier_tab.[application_identifier],

kvs.[value]

FROM kvs, key_tab,application_identifier_tab

WHERE key_tab.[id] = '1'

AND kvs.[key] = key_tab.[id]

AND application_identifier_tab.[id] = kvs.[application_
identifier]

ORDER BY application_identifier_tab.[id];

The result of this query is shown in the following screenshot:

Figure 10.3 – The query prints bundle IDs for all the installed applications

As you can see, the query prints the Bundle IDs for all the installed apps, including those
developed by Apple that come pre-installed on the device.

The value column contains a BLOB that we will use in the next section to find where an
application stores its data.

214 Analyzing Third-Party Apps

Tracking application GUIDs
At the beginning of this chapter, we pointed out that application artifacts are stored in the
data container, which can be located if the app's GUID is known; now, we'll learn how to
associate an application with its GUID.

The applicationState.db database, which we covered in the previous section,
contains a kvs table that stores a binary BLOB under the value column. We're going to
start by looking at the result of the query from the previous example, which prints Bundle
IDs for each app that is installed, as well as their associated BLOB values.

Here, we're going to analyze the binary BLOB from the com.burbn.instagram Bundle
ID to find where the Instagram application stores its data:

Figure 10.4 – Each Bundle ID has an associated binary BLOB

By looking at the BLOB through a hex viewer, such as DB Browser's built-in viewer, we
can see that the data is a binary PLIST. If we extract the BLOB cell, convert it into an
XML-based PLIST, and then analyze it, we'll be able to view its contents.

The following screenshot shows the binary BLOB displayed through a hex viewer:

Introducing iOS applications 215

Figure 10.5 – The BLOB contains a binary PLIST

By looking at the data, it's possible to make out some strings, such as paths and locations.

Now, let's extract the BLOB and view the resulting PLIST. Please refer to Chapter
4, Working with Common iOS Artifacts, to learn how to convert a BPLIST into an
XML-based PLIST.

216 Analyzing Third-Party Apps

The following screenshot shows the PLIST after the data was converted into XML and
then base-64 decoded:

Figure 10.6 – The PLIST contains details related to the app's containers

As you can see, we can extract the path to the app's data container from the PLIST. In
our example dataset, if we locate the /private/var/mobile/Containers/Data/
Application/71B2EBD8-B6DF-4118-908C-7B2976A3019E folder, we will find
Instagram's artifacts.

So far, we have learned how to identify what apps are installed on an iOS device and
where the data is stored. In the following sections, we'll dive deep into analyzing third-
party applications.

Dynamic application analysis 217

Dynamic application analysis
Third-party applications can be a huge source of evidential artifacts since most apps
collect, store, and process a tremendous amount of data from their users. Unfortunately,
investigators will most likely have to resort to manually analyzing these applications,
as forensic tools cannot possibly support each update of every app. Even if a tool does
support a certain application, a manual examination should still be carried out to validate
the tool's results and to ensure that all the data was parsed correctly.

Often, before the examination can be performed, the examiner will have to do some
research on the application of interest to understand how it works, what data it stores, and
where it stores it. This entails using a research device to install the app and analyze it.

When analyzing mobile applications, there is no standard process that an investigator
should take to examine the data since each application performs differently; in this
chapter, we will learn about one of the possible methodologies we can use, known as
dynamic analysis.

Generally speaking, there are two approaches to application analysis:

• Static analysis involves taking an in-depth look at an application's code to identify
known functions and API calls that can help determine exactly how the app works.

• Dynamic analysis entails running the application in a controlled environment and
analyzing the app's behavior to understand how it works.

Static analysis is not a viable option for analyzing third-party apps as the examiner doesn't
usually have access to the application's source code. However, by performing dynamic
analysis, the investigator can monitor the application's inputs, outputs, and connectivity
while the app is running.

From a more practical perspective, most iOS applications will store their data either in
SQLite databases or in PLISTs, so the analysis process will entail running the application
on a test device, locating the relevant artifacts, and analyzing them to understand how the
app works.

The examiner can also choose to monitor how the application interfaces with the network
by using a proxy interceptor such as Burp Suite or mitmproxy. We will learn how to
accomplish this in the next section.

218 Analyzing Third-Party Apps

Tip
It is recommended to research and analyze third-party applications using a test
device that is specifically for that purpose. Note that, since dynamic application
analysis requires direct access to the device and its filesystem, the test device
should be jailbroken. This could mean using older devices to perform testing,
such as those vulnerable to the checkm8 exploit, as these can easily be
jailbroken using Checkra1n. For further details, please refer to Chapter 2, Data
Acquisition from iOS Devices.

The following steps summarize the process of performing dynamic application analysis:

1. Download the application and install it on the test device.
2. Run the application, register it (if applicable) using unique details, and use the app

and its features normally.
3. Take notes of any user-provided input, such as usernames, passwords, and emails.
4. Monitor how the application writes data to disk by using a filesystem monitor.
5. Monitor the app's network activity by using a proxy monitoring tool.
6. Locate the application's artifacts on the filesystem and analyze them by searching

for strings or manually parsing through the data.

In the next section, we'll introduce some of the tools that can be used to perform dynamic
analysis on a third-party iOS application.

Connecting to the test device
The first step in the dynamic analysis process is establishing a connection between the
examiner's workstation and the iOS device. This will allow us to install some tools by
copying the executables to the device.

We're going to connect to the device through an SSH connection, but first, we need to
install the libimobiledevice library.

The following steps describe the process:

1. Plug a USB cable into the iOS test device so that it's connected to the forensic
workstation. Make sure that the device has been successfully jailbroken by using
checkra1n or unc0ver.

2. Download and install the libimobiledevice library from https://
libimobiledevice.org. If you're using a Mac, you can install the library by
running the brew install libimobiledevice command from a Terminal.

https://libimobiledevice.org
https://libimobiledevice.org

Dynamic application analysis 219

3. Then, run the iproxy 4242 44 command to start a proxy running on port 4242
that connects to the device's port 44 via the USB cable. If the device was jailbroken
using unc0ver, you may need to use port 22 instead of port 44.

4. Now, connect to the device by running ssh root@127.0.0.1 -p 4242. You
will be prompted for the device's password. The default password is alpine.

If all the commands were successful, you should see a root command prompt. Once a
connection to the device has been established, we can use a simple tool that simplifies the
task of locating an application's containers.

Using cda to locate an application's containers
In the first part of this chapter, we learned how to query the applicationState.db
database to locate where an iOS application stores its data; however, if the examiner
has direct access to the device, the cda tool can be used to quickly identify an
app's containers.

This tool, which can be downloaded from https://github.com/ay-kay/cda, is
written in Objective-C; the source files can be compiled by following the instructions on
the project's page.

To make this process easier, the binary executable that's been compiled for 64-bit
ARM devices can be downloaded from https://github.com/tiepologian/
iOS-Tools.

The next step involves copying the cda binary to the device. This can be done by using the
scp command, which performs file transfers through an SSH connection. Assuming you
downloaded the binaries and decompressed the ZIP file, follow these steps:

1. Open a Terminal shell on your local workstation and navigate to the iOS_tools
folder by using the cd command.

2. Run the scp -P 4242 cda root@127.0.0.1:/usr/bin/ command
and press Return. You will be prompted to enter the device's password, which is
alpine. Enter it and press Return.

3. If the command succeeds, the cda binary will be copied to the /usr/bin/ folder
on the iOS device. By placing the executable in that folder, the tool can be called
from any location within the device.

4. To ensure that it worked, from the terminal shell that is connected to the device,
run the ls -la /usr/bin/ command. You should see a long list of files,
including cda.

https://github.com/ay-kay/cda
https://github.com/tiepologian/iOS-Tools
https://github.com/tiepologian/iOS-Tools

220 Analyzing Third-Party Apps

Once the tool has been copied to the device, we can use it to quickly locate any application
that has been installed. Simply run cda, followed by the name (or partial name) of
the app.

For example, on a test device that has the Instagram app installed, we can find where the
application stores its data by running the following command:

iPhone:~ root# cda instagram

[1] Instagram (com.burbn.instagram)

Bundle: /private/var/containers/Bundle/Application/D054F8DC-
95A4-4489-BBBD-68F3E457A575

Data: /private/var/mobile/Containers/Data/Application/2A2FEE52-
B59D-42F1-A810-333364E12525

As you can see, the tool provides the examiner with the list of containers associated with
the application. This includes the data container, which is where the app stores user data
and preferences, and the group container, which contains data that is shared between
applications of the same group.

Locating an application's containers is often the very first step in dynamic analysis as
this will narrow down the scope of the examination, allowing the examiner to focus on
just one or two folders. In the next section, we'll learn how to monitor these folders to
understand how and where the application stores its data.

Using fsmon to monitor filesystem events
Previously, we introduced dynamic application analysis and learned that one of the steps
of this process involves running the app and live monitoring its behavior. One aspect
worth monitoring is how the application interacts with the filesystem; this includes
detecting any files that are written, edited, or deleted by the application.

By using a filesystem monitor, the examiner can run the application, perform a task such
as entering some data (user authentication, forms, and so on), and visualize how the
application reacts to user input. This can help them understand which files store what data.

One of the most popular filesystem monitoring tools is fsmon, an open source tool
developed by Sergi Àlvarez that supports many operating systems, including Linux,
macOS, Android, and, of course, iOS. The tool can be downloaded from GitHub at
https://github.com/nowsecure/fsmon.

Pre-built binaries for 64-bit ARM devices can also be downloaded from https://
github.com/tiepologian/iOS-Tools.

https://github.com/nowsecure/fsmon
https://github.com/tiepologian/iOS-Tools
https://github.com/tiepologian/iOS-Tools

Dynamic application analysis 221

The first step involves copying fsmon to the device, as we did with the cda tool:

1. Open a terminal shell on your local workstation and, if you're using the pre-built
binaries, navigate to the iOS_tools folder by using the cd command.

2. Run the scp -P 4242 fsmon root@127.0.0.1:/usr/bin/ command and
press Return. Enter the device's password and press Return.

3. If the command succeeds, the fsmon binary will be copied to the /usr/bin/
folder on the iOS device.

To run the tool, type fsmon, followed by the path to the location that should be
monitored. For example, to run fsmon and monitor all events over the entire filesystem,
type fsmon /. The following screenshot shows the tool's output:

Figure 10.7 – The fsmon tool prints any filesystem events

As you can see, fsmon shows any events that occur on the filesystem in different colors,
depending on the type of event. Events displayed in yellow indicate that a file was edited
or its attributes were modified, a red event shows that a file was deleted, and a purple event
indicates a newly created file.

222 Analyzing Third-Party Apps

To understand how an application works under the hood, use cda to find where the app's
data container is located. Then, use fsmon to monitor that location and run the app
normally, performing typical user activity. Monitor the tool's output to understand what
files are created or edited following a specific action being performed in the application.

Finally, in the next section of this chapter, we'll take a brief look at how to monitor
networking activity.

Using mitmproxy to monitor network activity
When you're performing a dynamic application analysis, you may come across a situation
in which you want to look at what API calls an application is making, what servers it
connects to, and, more generally, what data is sent or received over the network.

One of the possible solutions involves using a proxy server to intercept and decode
encrypted data that is sent over HTTPS/SSL, such as mitmproxy.

mitmproxy is an open source interactive HTTPS proxy that sits in the middle between
the client (iOS application) and the server. Man-in-the-middle (MITM) is the name
of the technique that's used by the proxy server to intercept the traffic: the idea is that
mitmproxy pretends to be the server to the client, and pretends to be the client to the
server, all while decoding traffic from both sides. Decrypting traffic is made possible
by installing a digital certificate on the device, which registers mitmproxy as a trusted
Certificate Authority (CA).

To use mitmproxy, you must install the certificate manually onto the iOS device, then
configure the device to send traffic to the proxy server. Finally, you must run the proxy
server on your workstation so that you can monitor and analyze networking activity.

To install mitmproxy, go to https://mitmproxy.org and download the installer. If
your workstation has brew installed, you can install the proxy by running the following
command from your terminal:

brew install mitmproxy

Once the server has been installed, start it by running mitmproxy from your terminal.

When the server is up and running, the CA certificate needs to be installed on the
iOS device. You can accomplish this by going to http://mitm.it from the device's
browser; however, before you install the certificate, its networking settings need to be
configured to allow traffic to be sent from the device to the proxy. Follow these steps:

1. On the device, open Settings | Wi-Fi and click on the wireless network to open
Advanced settings.

https://mitmproxy.org
http://mitm.it

Dynamic application analysis 223

2. Scroll down to HTTP Proxy and tap Configure Proxy.
3. Select Manual and, in the Server field, enter the IP address of the workstation that

is running mitmproxy. In the Port field, enter 8080.
4. From the device, browse to mitm.it and follow the instructions to install the

CA certificate.
5. Navigate to Settings | General | About | Certificate Trust Settings. Find the

certificate and enable it by turning the toggle on.

If everything has been set up correctly, open any application on the device and monitor
the terminal on your workstation: you should see the network traffic flowing in and out of
the device.

The following screenshot shows mitmproxy intercepting network traffic:

Figure 10.8 – Intercepting network traffic using mitmproxy

Generally, a proxy server is a great option to understand exactly how an iOS application
interacts with the network. However, there are some occasions where this approach may
not work. We'll discuss more advanced options in the next section.

http://mitm.it

224 Analyzing Third-Party Apps

Advanced application analysis
Performing dynamic application analysis is generally a straightforward task; however,
there are some apps, especially popular third-party social networks such as Instagram or
Twitter, that have some built-in mechanisms that prevent MITM attacks.

One of these is Certificate Pinning, which essentially means that mitmproxy's certificate
will not be accepted by the application. On such occasions, monitoring the application's
network traffic will simply not work. This is because the digital certificate will not be
trusted and the app won't be able to connect to its servers.

The only workaround is to inject custom code into the application to change the way it
works. One of the most popular code instrumentation toolkits is Frida, an open source
tool that allows you to inject JavaScript code into any iOS application. Frida allows
examiners to trace what functions an application is calling, print or modify a function's
arguments, and inject their code before or after a function call. Keep in mind that
running this tool requires the device to be jailbroken.

A complete tour of all Frida's features is beyond the scope of this book; you can get
started with the tool by following the tutorials at https://frida.re/docs/home/
or by reading Alexander Fadeev's blog articles; for example, https://fadeevab.
com/quick-start-with-frida-to-reverse-engineer-any-ios-
application/.

From a forensic viewpoint, Frida can be used together with other tools, such as Meduza,
to bypass Certificate Pinning and allow the examiner to analyze any kind of iOS app.
Meduza is an open source tool developed by Dima Kovalenko that works in two steps:
first, it analyzes an application and collects the certificates that are used by the app to
connect to its servers; then, the tool automatically generates a Frida JavaScript script
that unpins the certificates that were collected. Running the application by injecting this
JavaScript code will allow the examiner to catch all network traffic by using mitmproxy
or any other proxy server.

To learn about Meduza and download the tool, visit the project's page at https://
opensourcelibs.com/lib/meduza.

By now, you should have a basic idea of how to perform dynamic analysis on an iOS
application, understand what artifacts are generated, and know where they're stored.

In the last section of this chapter, we'll take a more practical approach by looking at some
of the most popular third-party applications and their artifacts.

https://frida.re/docs/home/
https://fadeevab.com/quick-start-with-frida-to-reverse-engineer-any-ios-application/
https://fadeevab.com/quick-start-with-frida-to-reverse-engineer-any-ios-application/
https://fadeevab.com/quick-start-with-frida-to-reverse-engineer-any-ios-application/
https://opensourcelibs.com/lib/meduza
https://opensourcelibs.com/lib/meduza

Practical third-party applications forensics 225

Practical third-party applications forensics
In this section, we're going to look at some of the most popular iOS third-party
applications and their artifacts. The purpose of this section is not to take an in-depth look
at each application, but rather to give you a practical reference of what artifacts can be
expected for each app, as well as where they're located.

It's important to understand that the names and paths of artifacts are subject to change,
and each update may change the way an application interfaces with iOS.

Applications are grouped into four categories: social networking, messaging, productivity,
and multimedia.

For each application, the path to the artifact is provided, along with a description. Keep in
mind that all the paths are relative to the application's data container or group container.

Social networking applications
In this section, we will focus on the three primary social networking applications,
Facebook, Instagram, and Twitter. The Reddit app is also included in this category.

Facebook
The following table shows the most common artifacts for Facebook:

Table 10.1 – Common Facebook artifacts

226 Analyzing Third-Party Apps

Instagram
The following table shows the most common artifacts for Instagram:

Table 10.2 – Common Instagram artifacts

Twitter
The following table shows the most common artifacts for Twitter:

Table 10.3 – Common Twitter artifacts

Practical third-party applications forensics 227

Reddit
The following table shows the most common artifacts for Reddit:

Table 10.4 – Common Reddit artifacts

Now, let's look at a few messaging apps.

Messaging applications
Although messaging applications were discussed in detail in Chapter 8, Email and
Messaging Forensics, this section will provide a reference for some of the most commonly
used instant messaging apps, such as WhatsApp, Telegram, Facebook Messenger,
and Signal.

WhatsApp
The following table shows the most common artifacts for WhatsApp:

Table 10.5 – Common WhatsApp artifacts

228 Analyzing Third-Party Apps

Telegram
The following table shows the most common artifacts for Telegram:

Table 10.6 – Common Telegram artifacts

Facebook Messenger
The following table shows the most common artifacts for Facebook Messenger:

Table 10.7 – Common Facebook Messenger artifacts

Practical third-party applications forensics 229

Signal
The following table shows the most common artifacts for Signal:

Table 10.8 – Common Signal artifacts

Next, we'll discuss artifacts related to productivity applications.

Productivity applications
The following tables describe artifacts concerning work and productivity applications,
such as Microsoft Teams, Zoom, Dropbox, Microsoft OneDrive, and Gmail.

Microsoft Teams
The following table shows the most common artifacts for Microsoft Teams:

Table 10.9 – Common Microsoft Teams artifacts

230 Analyzing Third-Party Apps

Zoom
The following table shows the most common artifacts for Zoom:

Table 10.10 – Common Zoom Artifacts

Dropbox
The following table shows the most common artifacts for Dropbox:

Table 10.11 – Common Dropbox artifacts

Microsoft OneDrive
The following table shows the most common artifacts for Microsoft OneDrive:

Table 10.12 – Common OneDrive artifacts

Practical third-party applications forensics 231

Gmail
The following table shows the most common artifacts for Gmail:

Table 10.13 – Common Gmail artifacts

Next, we'll look at a few multimedia apps.

Multimedia applications
This section includes applications that allow you to view or share media files, such as
Netflix, YouTube, Spotify, Snapchat, and TikTok.

Netflix
The following table shows the most common artifacts for Netflix:

Table 10.14 – Common Netflix artifacts

YouTube
The following table shows the most common artifacts for YouTube:

Table 10.15 – Common YouTube artifacts

232 Analyzing Third-Party Apps

Spotify
The following table shows the most common artifacts for Spotify:

Table 10.16 – Common Spotify artifacts

Snapchat
The following table shows the most common artifacts for Snapchat:

Table 10.17 – Common Snapchat artifacts

Summary 233

TikTok
The following table shows the most common artifacts for TikTok:

Table 10.18 – Common TikTok artifacts

When analyzing third-party apps, the examiner should keep in mind that researching and
validating is always required since apps are constantly being updated, and each update
may change the way an application stores its data.

Summary
In this chapter, we learned about third-party iOS applications. First, we learned where an
application stores its data, how to identify installed applications, and how to associate an
app with its GUID. Then, we focused on analyzing third-party apps. We introduced the
concept of dynamic analysis and learned about the step-by-step process of analyzing an
application. We also learned how to identify data containers using the cda tool, how to
monitor filesystem changes, and how to visualize an application's network traffic.

Finally, we provided a practical cheat sheet with paths and descriptions of the most
common artifacts that can be found in popular third-party iOS applications.

In the next chapter, we will discuss more advanced topics in iOS forensics.

11
Locked Devices,

iTunes Backups, and
iCloud Forensics

Up to this point in the book, we have learned how to perform an iOS acquisition using
different methods and how to analyze the extracted data to gain meaningful insights, such
as interpreting location artifacts, parsing through media files, or analyzing pattern-of-life
data. Everything we have covered so far relies on the fact that the iOS device that is being
examined is unlocked, or the passcode is known; however, this is not always the case.
There are some occasions in which the investigator may have to deal with locked devices,
and that will be the focus of this chapter.

We will start the chapter by learning how to deal with locked devices, what options the
examiner has, and how to attempt passcode cracking. Then, we will discuss Before First
Unlock (BFU) acquisitions and learn what kind of data we can expect to find in such
extractions. Later on in the chapter, we will introduce iTunes backups and we will learn
how to extract and analyze them. In the final part of the chapter, we'll discuss iCloud
forensics and learn how to extract backups, the keychain, and data synced to iCloud.

236 Locked Devices, iTunes Backups, and iCloud Forensics

In this chapter, we will cover the following topics:

• Acquiring locked devices

• BFU acquisition of locked devices

• Introducing iTunes backups

• Introducing iCloud forensics

Acquiring locked devices
At the start of this book, in Chapter 1, Introducing iOS Forensics, we discussed the iOS
operating system and learned how Apple achieves data protection by encrypting files
stored on the device.

The device's passcode is an essential aspect of the encryption process, as it is used to
generate the encryption key, which, in turn, is used to decrypt the data. Until the user
enters the screen lock passcode, almost every piece of data remains inaccessible. Of
course, there are some exceptions, as some files are required for the operating system to
work and they need to be always accessible, even when the device is locked.

For these reasons, acquiring and analyzing a locked device is no easy task but there
are a few options. When an investigator is tackling a locked device, the first step
requires identifying the device and its current state, as the options available to
attempt data acquisition will vary depending on a number of factors, such as the
model and iOS version.

The initial identification phase should allow the examiner to answer the following
questions:

• Is the locked device in a BFU or After First Unlock (AFU) state?

• What's the device's hardware model?

• Is the device vulnerable to Checkm8?

• What iOS version is the device running?

• Has the device ever been paired to a desktop or laptop computer?

By answering these questions, the examiner will be able to assess what the best course of
action might be to gain access to the locked device. Before we go further, it's important to
understand the differences between the BFU and AFU states:

• BFU: Devices in a BFU state are those that have been powered off or rebooted and
have not been unlocked, not even once, since the device was powered on.

Acquiring locked devices 237

• AFU: When a device is powered on and the correct passcode is entered, the device
ends up in AFU mode.

The point here is that when a device is found in an AFU state, a lot more data can be
extracted and analyzed, as some encryption keys are actually retained in memory.

Once the device has been successfully identified, the following options should
be considered:

• Locating and using lockdown pairing records

• Passcode cracking

• Performing a BFU acquisition

• Sending the device to third-party labs or premium services, such as Cellebrite
Advanced Services or Grayshift's GrayKey

• Locating and analyzing iTunes backups

• Downloading and analyzing iCloud backups

• Downloading and analyzing iCloud synced data

In the following sections of this chapter, we'll discuss the pros and cons of each of these
options, starting with using lockdown pairing records.

Using lockdown pairing records to access the device
Lockdown records, also called pairing records, are essentially files stored on a
host computer that contain cryptographic keys that are used to allow iOS devices to
communicate with paired computers.

The first time an iOS device is connected to a PC or macOS computer that has iTunes
installed, the user will be prompted to trust the device by entering the device's passcode.
This will create a lockdown record on the host, which means that the user will not have to
unlock the device every time it is connected to the computer.

If the investigator has physical and legal access to a host computer that was paired with the
device, the lockdown file can be used to access the locked device and successfully perform
a logical acquisition.

There are, however, some caveats. First of all, accessing a locked device using a pairing
record will only work if the device is in an AFU state; secondarily, lockdown records
expire after some time. Although there is no definite answer as to when exactly these
records expire, research that has been carried out seems to suggest that lockdown records
expire anytime between 7 and 30 days after they were created.

238 Locked Devices, iTunes Backups, and iCloud Forensics

On Windows machines, lockdown records are typically stored in \%ProgramData%\
Apple\Lockdown\.

On macOS computers, they can be found in /var/db/lockdown/.

Once the investigator has located the lockdown record, a logical acquisition can be
performed using tools such as the Elcomsoft iOS Forensic Toolkit or MOBILedit
Forensic Express.

The following steps describe the process using the Elcomsoft iOS Forensic Toolkit:

1. First, launch the Toolkit.
2. Connect the device to the workstation using a USB-A cable.
3. Select the B – Backup option.
4. When prompted, enter the path to the lockdown record.

If the pairing record is accepted, a logical backup will be created. The following screenshot
shows the Toolkit's main menu:

Figure 11.1 – Elcomsoft iOS Forensic Toolkit can acquire locked devices using pairing records

BFU acquisition of locked devices 239

If the device is configured to produce unencrypted backups, the tool will automatically set
a temporary password to ensure that all data is acquired during the backup process.

In the next section, we'll discuss passcode cracking.

Passcode cracking
In the past, there were several methods for attempting to crack a device's passcode, such
as black boxes that could be connected to the device that would brute force every possible
combination. Unfortunately, these methods only support legacy devices.

With the iPhone 5s, Apple introduced the Secure Enclave, which effectively slows down
passcode attempts, rendering brute force attacks impossible.

There are still some software tools that can be used for the purpose, such as Elcomsoft's
iOS Forensic Toolkit, which can brute force the passcode for iPhones 4, 5, and 5c running
iOS 4 up to iOS 10.

If the examiner is fortunate enough to run into one of these devices, a full physical
acquisition can be performed, cracking the passcode, and effectively accessing the locked
device. To perform a brute force attack, the device will have to be booted in DFU mode
and exploited through the Checkm8 vulnerability. A full brute force attack of a six-digit
passcode takes approximately 21 hours to complete on an iPhone 5, and up to 40 hours
on an iPhone 4.

If passcode cracking is not an option and a lockdown record is not found,
performing a BFU acquisition may be the only option. We'll discuss these
acquisitions in the next section.

BFU acquisition of locked devices
In Chapter 2, Data Acquisition from iOS Devices, we introduced the Checkm8
vulnerability and the checkra1n jailbreak, which allows the examiner to gain full access to
the filesystem of devices ranging from the iPhone 5s to the iPhone X. This vulnerability
can be exploited to perform an acquisition from locked or disabled devices, even if the
passcode is unknown. This kind of acquisition is called a BFU acquisition.

It's important to understand that a BFU acquisition only allows a partial extraction of the
device's data, as most files remain encrypted until the passcode is entered. Still, a partial
extraction, including data from the keychain, is definitely better than nothing, as this
could include notable evidence.

240 Locked Devices, iTunes Backups, and iCloud Forensics

The following table lists some of the most popular artifacts that can be extracted through a
BFU acquisition:

Table 11.1 – Common artifacts found in BFU acquisition

As you can see from the table, some key artifacts can be extracted from a locked device
through a BFU acquisition, provided the device is vulnerable to Checkm8.

To perform a BFU acquisition, the device is initially jailbroken using checkra1n,
which doesn't require it to be unlocked. Then, the keychain is partially extracted, and
a filesystem acquisition is performed using a tool such as the Elcomsoft iOS Forensic
Toolkit. Some forensic tools, such as the Cellebrite UFED, don't require the device to be
jailbroken, as the Checkm8 exploit is performed directly within the tool.

Performing a BFU acquisition using the Elcomsoft iOS
Forensic Toolkit
The following steps describe the process of performing a BFU acquisition using the
Elcomsoft iOS Forensic Toolkit:

1. First, put the device in recovery mode and start checkra1n.

BFU acquisition of locked devices 241

2. Follow the instructions to put the device in DFU mode and apply the temporary
jailbreak. Make sure that the device is connected using a USB-A cable, as using a
USB-C cable will not work.

3. Launch the Elcomsoft iOS Forensic Toolkit and choose the K – Keychain option.
4. When the tool prompts you for the passcode, skip this step by pressing Enter.
5. When the process completes, choose the F – File System option from the main

menu to acquire the device's filesystem.
6. When the tool prompts you for the passcode, press Enter and wait for the

process to finish.

The following screenshot illustrates the process:

Figure 11.2 – Elcomsoft iOS Forensic Toolkit performing a BFU acquisition

Next, we will repeat the process using a different tool.

242 Locked Devices, iTunes Backups, and iCloud Forensics

Performing a BFU acquisition using the
Cellebrite UFED
Performing a BFU acquisition using Cellebrite UFED is also straightforward, and it
doesn't require the device to be jailbroken through checkra1n:

1. Launch Cellebrite UFED.
2. Select Advanced Logical and choose the Full File System (checkm8) option.
3. Connect the device using a USB-A cable and click Continue.
4. When the tool prompts you for the device's password, click Cancel.
5. Click YES to perform a BFU acquisition.

The following screenshot shows the step where a BFU acquisition is selected:

Figure 11.3 – Cellebrite UFED performing a BFU acquisition

Once the acquisition process completes, the keychain and filesystem dumps can
be analyzed as usual, manually, or using forensic software, such as Cellebrite
Physical Analyzer.

Introducing iTunes backups 243

Tip
It's worth mentioning that performing a BFU acquisition completely bypasses
USB Restricted Mode; with iOS 11, Apple introduced a security feature that
prevents USB accessories from making any data connection if the device wasn't
unlocked at least once within the past hour. Theoretically, this should limit the
attack surface against physically connected hacking tools; however, exploiting
the device through Checkm8 bypasses this security feature.

Although a BFU acquisition is the best option to extract data from a locked device, it's
clear that newer devices – which are not vulnerable to Checkm8 – cannot be acquired
with this method. Investigators attempting to access these devices will have to resort to
sending the phone to a third-party lab that offers forensic services, such as Cellebrite
Advanced Services.

If a device cannot be acquired directly, it may still be possible to extract its data indirectly,
by locating and analyzing the device's backup, which may be stored on a host computer or
in the cloud.

In the next section of this chapter, we'll introduce iTunes backups, and we'll learn how to
extract and analyze them.

Introducing iTunes backups
Investigating a device that is locked by an unknown passcode can quickly bring an
investigation to a halt if the iPhone in question is one of the newer models, such as the
iPhone 13 or the iPhone 12; however, if the suspect has backed up their device to their
desktop or laptop and the investigator has access to this machine, the backup can easily be
recovered, extracted, and analyzed.

Another reason why examining backups may be beneficial is that the user may have
deleted some data from their mobile device, but that doesn't delete the data that resides
within the backup: it's quite common, in fact, that backup files contain data that the user
believes no longer exists.

Local backups, also called iTunes backups, are essentially a logical acquisition of the
device and typically contain contacts, SMS messages, media files, logs, databases,
keychains, preferences, configurations, browsing artifacts, and location data, for example.
A backup can be created manually by the user using iTunes, or the device can be
configured to automatically create a new backup when it is plugged into a machine. On
macOS computers, iTunes is no longer required, and the backup process can be started
directly from Finder.

244 Locked Devices, iTunes Backups, and iCloud Forensics

When an iTunes backup is created, iOS allows the user to enhance security by encrypting
the backup with a password. Once the user sets the password, all subsequent backups
will be encrypted, and the files will only be accessible to the examiner if the password is
known. However, password cracking can be attempted, and this will be covered in detail
later on in the chapter.

It's important to understand that since iOS 13, iTunes backups will not contain user-
sensitive data (such as call logs, keychain, and Safari history) if encryption is not enabled.

Locating backup files
An iTunes backup is essentially a folder named with a GUID that contains numerous
subfolders and files. The following screenshot should give you an idea of what it looks like:

Figure 11.4 – File structure of an iTunes backup

On Windows machines, iOS backups are typically stored at C:\Users\<user>\
AppData\Roaming\Apple Computer\MobileSync\Backup. If, however,
the Windows app version of iTunes is installed, local backups will be stored at C:\
Users\<user>\Apple\MobileSync\Backup.

Introducing iTunes backups 245

On machines running macOS, local backups will be stored at /Users/<user>/
Library/Application Support/MobileSync/Backup/.

By examining these locations, the investigator may find multiple backups of the same
device, or backups for different devices.

In the root folder of each backup, there are four files of interest:

• Info.plist: This property list contains details from the device such as the IMEI,
ICCID, model number, the list of all installed applications, and the timestamp of
when the backup was created.

• Manifest.db: The Manifest database is a normal SQLite database, but it will
be encrypted if a password was specified for the backup. The main table of interest,
Files, contains a list of all files included in a backup and their properties, such as
fileID, domain, and path.

• Manifest.plist: The Manifest property list stores information for every
application that is installed on the device, such as the path to the app's containers.
This file also contains the IsEncrypted key, which indicates whether the backup
was encrypted or not, and the WasPasscodeSet key, which tells us whether the
device had a passcode.

• Status.plist: This property list contains generic metadata, such as the backup's
unique identifier and the timestamp of when it was completed.

Since we now have all the information from a backup, we can start putting the filesystem
back together using our forensic tools.

Analyzing iTunes backups
Once the investigator has located an iTunes backup, the filesystem has to be rebuilt and
the files will need to be decrypted. Although this can also be done manually, the easiest
solution is to import the backup into any mobile forensic software, such as Cellebrite
Physical Analyzer or Elcomsoft Phone Viewer, and analyze the data as usual.

To import an iOS backup into Cellebrite Physical Analyzer, follow these steps:

1. Launch the tool and from the main menu, choose File | Open case.
2. Then, in Case wizard, click on Add.
3. Choose Common source | Backup | iTunes backup.
4. Select the folder that contains the backup and click Continue.

246 Locked Devices, iTunes Backups, and iCloud Forensics

Once Cellebrite Physical Analyzer has finished parsing the files, the artifacts can be
examined as if they were a normal logical acquisition. The following screenshot shows the
correct option within Case wizard:

Figure 11.5 – Loading an iTunes backup into Cellebrite Physical Analyzer

Previously, we learned that iTunes backups can be encrypted by setting a custom
password. On such occasions, if the password is not known, the only available option is to
attempt password cracking. We'll learn how to do this in the following section.

Cracking iTunes backup passwords
If the password to an iTunes backup is not known, password cracking can be attempted by
performing a dictionary attack or by brute-forcing the password. In a dictionary attack,
a long list of common passwords is used to attempt to break into the iTunes backup; a
brute force attack, on the other hand, is a trial-and-error method that tries every possible
combination of characters for a password until it succeeds.

Introducing iTunes backups 247

The possibility of successfully cracking the password greatly depends on its complexity.
Since iOS 10, the encryption process has been strengthened and most tools can only test
around 200 passwords per second, even on a high-end workstation. This makes long and
complex passwords virtually unbreakable.

One of the most popular tools for iTunes password cracking is Elcomsoft Phone Breaker,
which works on both Windows and macOS machines.

Figure 11.6 – Elcomsoft Phone Breaker home screen

248 Locked Devices, iTunes Backups, and iCloud Forensics

To attempt password cracking of an iTunes backup, follow these steps:

1. Launch Elcomsoft Phone Breaker and click on Password Recovery Wizard.
2. Select Choose source and navigate to the folder that contains the iTunes backup

you want to crack.
3. Next, set up the recovery pipeline by choosing Dictionary Attack, Brute-Force

Attack, or both.

Figure 11.7 – Set up a dictionary attack or a brute-force attack

4. You can set additional parameters, such as the password length, common character
sets, or custom character sets. Then, click Done.

5. Click on Start recovery to begin the process.

From the research that has been carried out, it's recommended to attempt brute-forcing a
four-digit password first, followed by a six-digit password and a dictionary attack, as these
are the most common and easily crackable.

Unfortunately, there are some cases in which recovering the password to an iTunes backup
is simply not possible, or there may even be no local backup available. In these situations,
one of the possible courses of action is to attempt to download and extract backups or
data synced to iCloud.

Introducing iCloud forensics 249

The final section of this chapter will discuss iCloud forensics.

Introducing iCloud forensics
In October 2011, Apple introduced iCloud, a cloud-based platform that allows users to
store and share files between their devices, and backup their data. iCloud is integrated
directly into iOS and is accessible from Windows machines, macOS computers, or directly
from the web by browsing to https://www.icloud.com.

From a forensic viewpoint, cloud forensics is arguably the future of mobile forensics as it
allows investigators to access data that may not even be stored on the device itself. As the
majority of new devices do not (yet) support jailbreaks and full filesystem acquisitions,
performing a cloud acquisition is a great alternative.

Before we dive deep into the technical details of extracting data from iCloud, it's
important to understand exactly what kind of data we can expect to find, starting with
iCloud backups.

iCloud backups
Since the release of iOS 5 in 2011, Apple allows users to back up their devices
automatically to their iCloud accounts. These backups are similar to the iTunes
backups we discussed in the previous section and include most of the data that is
stored on a device, such as application data, device settings, call logs, messages, notes,
and Safari history.

The user can elect to include or exclude certain elements from the backup directly from
the device by navigating to Settings | [User] | iCloud | Manage storage | Backups.

To perform an iCloud backup, there is no need to connect the device to a computer, as the
backup process happens automatically during the night when the device is charging and
connected to a Wi-Fi network. The process can also be started manually from the device.

Cloud backups are made incrementally to save space and time, and typically, at least two
or three backups are retained in the cloud. All data is securely encrypted both in transit
and in storage, and the encryption key is stored by Apple in the user's iCloud account.
More sensitive data, such as Apple Card transactions and health data, is secured with a
stronger form of protection known as end-to-end encryption; this data is encrypted using
keys derived from information unique to the device, so nobody – not even Apple – has
access to this data.

https://www.icloud.com

250 Locked Devices, iTunes Backups, and iCloud Forensics

Tip
When an investigation involves a locked device that cannot be acquired
using any of the methods described in previous chapters, one of the possible
workarounds is to take advantage of iCloud's automatic backup capabilities.
Putting the device close to a known Wi-Fi network and charging it for a few
hours will trigger the creation of a new backup that can then be downloaded
and analyzed, revealing the data stored on the device.

Backups are not the only thing that is stored in iCloud, as iOS also provides automatic
syncing capabilities for certain data categories.

iCloud synced data
Syncing data between iOS devices has become a seamless experience for the user
thanks to iCloud. The following is a list of the most common categories that are synced
to the cloud:

• Account information

• User settings

• Mail

• Call history

• Messages

• Contacts, notes, and calendars

• Safari history, tabs, and bookmarks

• iCloud Keychain

• Apple Health

The user has a certain degree of control over what data is synchronized to iCloud, as
syncing can be enabled on a per-app setting directly from the device. The following
screenshot shows iCloud syncing settings, which can be accessed by going to Settings |
[User] | iCloud and toggling individual apps in the Apps using iCloud section:

Introducing iCloud forensics 251

Figure 11.8 – Apps using iCloud from the device settings

iCloud synced data can be downloaded using forensic tools, provided the investigator
has legal access to cloud data. Downloading synced data can be extremely valuable for an
investigation as it gives examiners quick access to specific artifacts, removing the need to
download an entire backup.

252 Locked Devices, iTunes Backups, and iCloud Forensics

Accessing iCloud data
Access to iCloud backups and synced data can be provided to law enforcement by Apple
through the course of legal requests. As Apple holds the user's encryption keys, they can
decrypt most of a user's iCloud data, except for sensitive data, which is encrypted with
end-to-end encryption.

This solution, however, has several drawbacks:

• Processing law enforcement and government requests is a very slow process due to
the large volumes of data requested.

• The data that is returned by Apple is incomplete, as it doesn't include sensitive
artifacts, such as Apple card transactions, the keychain, messages, and Safari history.

There are other options that allow the investigator to pull the data directly from iCloud,
but these requests will have to be authorized by Apple servers by providing some sort of
authentication credentials.

Currently, iCloud credentials can be supplied in three different formats:

• Apple ID and password: If the investigator has legal access to the user's Apple
ID (email address) and password, these credentials can be used to access iCloud
data, download backups, and synced data, decrypt them, and convert the data to
an iTunes backup. If two-factor authentication (2FA) is enabled for the account,
access to the device or SIM card is required.

• Authentication token: A token is a small portion of binary data that works
like a browser cookie to log in to a website. Authentication tokens are used as a
replacement for user credentials and allow devices to authenticate with iCloud
without requesting an Apple ID and password for every request. If a user logged
into their iCloud account from a Windows or macOS machine, and the investigator
has access to the computer, the token can be used to access iCloud data without the
need for the Apple ID and password. Although Apple frequently changes iCloud
authentication protocols, at present, tokens only work for a limited period of time
and can only be used from the machine that generated them. Finally, using a token
will only provide access to some of the data stored in iCloud, such as photos, iCloud
Drive files, emails, call logs, and Safari history. At the time of writing, authentication
tokens cannot be used to access iCloud backups. Tokens can be extracted by using
Elcomsoft Phone Breaker.

Introducing iCloud forensics 253

• Trusted device: If the Apple ID and password are not available but the investigator
has access to a user's device, it may still be possible to access all of the user's iCloud
data. The device must be logged into the iCloud profile and the device's passcode
must be known. To gain access to iCloud, connect the device to the workstation
and run Elcomsoft Phone Breaker. Once a trust relationship has been established,
the tool will sideload an extraction agent onto the device and the examiner will be
presented with a list of iCloud backups and data that can be extracted. Currently,
this solution works with devices running iOS 9 through 14.3, or jailbroken devices.

By supplying the user's credentials to Apple servers, the investigator will be able to pull
backups and synced data from iCloud, potentially revealing critical evidence that may no
longer be present on the device itself. Next, we'll discuss iCloud Keychain.

Introducing iCloud Keychain
The keychain is a system-wide storage mechanism designed to store a user's most
sensitive data, such as passwords, authentication tokens, encryption keys, and credit card
details. A local keychain is stored on each of a user's devices and any changes are pushed
to iCloud, where iCloud Keychain is securely stored.

Users can choose to save passwords and login details to the keychain, while iOS
applications typically use it behind the scenes to store encryption keys and tokens. The
keychain has been designed with security in mind, so each application can only access its
own data and cannot access system records or any other app's data.

When an application creates a new record in the keychain, different security classes can
be selected depending on the circumstances in which the data should be accessed (BFU,
AFU, and always accessible, for example). There is also a kSecAttrSynchronizable
attribute that indicates whether the record should be synced to iCloud Keychain or not.

254 Locked Devices, iTunes Backups, and iCloud Forensics

The following screenshot shows what the keychain looks like:

Figure 11.9 – Analyzing iCloud Keychain in Elcomsoft Phone Breaker

Since iCloud Keychain stores a user's most sensitive data, this data will most likely be of
interest for an investigation. To access iCloud Keychain, an investigator will require all of
the following:

• Apple ID and password

• 2FA code (push notification and SMS code)

• Device passcode

In the following section, we'll learn how to extract iCloud Keychain and iCloud
synced data.

Introducing iCloud forensics 255

Extracting iCloud Keychain and synced data
If the investigator has access to iCloud credentials, the keychain and synced data can be
downloaded using Elcomsoft Phone Breaker. The following steps describe the process:

1. Launch the tool, select the Apple tab, and from the iCloud Data section, click on
Download Synced data.

2. Choose the authentication method depending on the type of credentials you
have access to (Apple ID, authentication token, or trusted device) and click the
Sign in button.

3. Select what data should be downloaded by ticking the checkbox, then
click Download.

4. Once the tool finishes downloading the data, the keychain can be analyzed by
clicking on the Explore Keychain button from the tool's home screen.

The following screenshot shows what kind of data can be extracted from iCloud:

Figure 11.10 – Downloading iCloud synced data with Elcomsoft Phone Breaker

In the final part of this chapter, we'll go through the procedure of extracting an
iCloud backup.

256 Locked Devices, iTunes Backups, and iCloud Forensics

Extracting iCloud backups
Forensic tools, such as Elcomsoft Phone Breaker or Belkasoft X, not only allow examiners
to download cloud-synced data, but also provide a simple solution to extract and decrypt
a full iCloud backup. Keep in mind that authentication tokens will provide access to
synced data, but not to iCloud backups: the Apple ID and password are required.

Before attempting the extraction of iCloud backups, make sure you have the legal
authority and consent to access this data.

To download an iCloud backup, launch Elcomsoft Phone Breaker and follow these steps:

1. From the Tools menu, select the Apple tab and click on Download backups.
2. Provide authentication credentials and press Sign in.
3. Once the tool signs into the iCloud account, a list of available devices and backups

will be displayed. Select the device whose backups you would like to download by
ticking the checkboxes.

4. By enabling the Download only specific data option, you can speed up the process
by quickly downloading the most significant data first.

5. Click Download to start the process. The entire procedure may take some time,
depending on the size of the backup. Once the process is complete, the extracted
data can be examined using forensic software, such as Elcomsoft Phone Viewer or
Cellebrite Physical Analyzer.

Summary 257

The following screenshot shows what the process looks like:

Figure 11.11 – Downloading iCloud backups using Elcomsoft Phone Breaker

The power of cloud forensics resides in the fact that, under some circumstances, it is even
possible to acquire iOS backups without having physical access to that particular device.
The wealth of user data stored in iCloud can be crucial for any kind of mobile forensic
investigation or incident response case.

Summary
In this chapter, we introduced the topic of locked devices and learned all about different
investigative approaches that can lead to the acquisition of a device that has an unknown
passcode. First, we learned where to locate lockdown records and how to use them to
perform a logical acquisition of a locked device. Then, we briefly discussed passcode
cracking, before moving on to BFU acquisitions. Next, we learned where iTunes backups
are stored and how to analyze their metadata. Finally, in the last section of the chapter,
we introduced iCloud forensics by learning what data is synced to the cloud, how to gain
access to it, and how to extract it using forensic tools.

In the final chapter of this book, we will learn how to write a mobile forensics report and
how to export a device's artifacts to a timeline.

In this part, you will understand the importance of structuring data correctly in a report
and how to present it using a timeline.

This part of the book comprises the following chapters:

• Chapter 12, Writing a Forensic Report and Building a Timeline

Section 3 –
Reporting

12
Writing a Forensic

Report and Building
a Timeline

So far, it has been a journey of testing, acquiring, analyzing, and researching artifacts from
iOS devices. We have worked on different methodologies and techniques for extracting
data from a device, and we have learned how to analyze this data to highlight the
evidence. In this final chapter, we will talk about the best practices and industry standards
for writing a mobile forensic report.

We will start the chapter by learning how a report should be structured, what should be
included, and how evidence should be reported in an impartial manner. Then, we will
learn how to automatically generate a report using forensic software. In the final part of
this chapter, we will discuss timelines, which have become the backbone of digital forensic
analysis in both the public and private sectors, as they help explain what was happening
on a given device during an incident or a crime. We will learn how to generate a timeline
using forensic tools.

262 Writing a Forensic Report and Building a Timeline

In this chapter, we will cover the following topics:

• Mobile forensics reporting

• Creating reports using Cellebrite Physical Analyzer

• Introducing timelines

• Building a timeline with Magnet AXIOM

Mobile forensics reporting
Presenting the findings of an investigation through a technical report is arguably one
of the most important aspects of the mobile forensics process. Much of what was
learned by analyzing the data will be lost if the data is not presented in a clear and
concise manner. An effective forensic report should explain not only what data was
found, but also how that data arrived at that location, how it was generated, and what
it means for the investigation.

One of the first issues that arises is determining what should be included in the report. If
too much information is included, the most important details may be overlooked. If there
is too little information, the report may seem incomplete or incomprehensible.

The exact structure of the report will vary depending on what kind of knowledge the
reader has. Presenting the results of an investigation to a court of law, a corporation's
top management, or any kind of non-technical audience will require technical concepts
to be explained even more clearly and in detail. It's important that all actions performed
during the investigation are accounted for and described in a way that is understandable
to the audience.

Generally speaking, the following information should be included in any kind of
forensic report:

• Executive summary

• Roles and tasks assigned (that is, Who conducted the acquisition process? Who
examined the data?)

• Description and identification of the devices that were examined

• Description of how evidence integrity was preserved and how the chain of custody
was maintained

Mobile forensics reporting 263

• Explanation of the acquisition process

• Description of how the analysis process was performed and what tools were used

• Information that supports the repeatability or reproducibility of the process

• Findings and sources for each piece of evidence

• Comments and conclusions

Forensic tools have built-in reporting features that document and summarize all the
interactions that have been carried out on a device and during the analysis process;
however, relying on reports generated by a tool is not enough, since an examiner will
most likely have used a variety of tools and performed manual tasks during the process.
This means that an investigator must be able to describe the entire process so that it is
understandable to a non-technical audience.

Most tools' reporting systems will output reports in Microsoft Word, PDF, or CSV
documents. The output of these tools will be used to supplement the main document,
which may be created in a word processor, such as Microsoft Word or Apple Pages, and
then exported as a PDF file.

Presenting the findings and evidence in a clear and understandable manner is the ultimate
goal of an investigation.

Writing a forensic report
Presenting a forensic report professionally and in a visually appealing format will make
the complex and unstructured data available in an easily understandable way. Diagrams,
charts, and timelines can also be used to present the data visually.

264 Writing a Forensic Report and Building a Timeline

The objective of a forensic report is simply to tell the story of what a digital artifact
indicates. The following diagram illustrates the logical questions that a report
should answer:

Figure 12.1 – The logical steps of a forensic report

Building on the points described on the previous page, the following sections will give the
reader a better understanding of how a report should be written and what information
should be included.

Cover/title page/roles assigned
The first page in a forensic report will be the title page, which at a minimum should
include a title, the name of the case, the case number, and the name of the investigator.
Additionally, roles and assignments should also be part of this page. This includes the
names and titles of those responsible for the acquisition process, who analyzed the data,
and who prepared the report.

A table of contents may also be included to provide a quick reference, especially if the
report is long.

Mobile forensics reporting 265

Abstract or executive summary
The executive summary gives the reader an overview of the investigation and includes a
summary of the activities completed and the final result. This section will vary in length,
but typically this would be a one-paragraph summary of the entire report. By reading the
executive summary, the reader should be able to understand what the examiner was asked
to do and why they were asked to do it. Furthermore, the executive summary should also
describe what this particular task has to do with the overall investigation.

Device identification
This section should contain a descriptive analysis of the physical evidence items that
were examined. This often starts with information documenting the device, such as the
model, serial number, condition, configuration information, and pictures of the device.
The pictures may be of the device in the place where it was seized, and drawings of the
location may also be included.

Details describing the legality of the examination should also be included. If the device
was seized, what right did the examiner have to collect, acquire, and analyze the device? If
a search warrant was required and obtained, this should also be reported.

Chain of custody
A well-documented chain of custody is what holds the forensics process together and
supports the integrity of the evidence so that it can be presented as evidence in court.
The inability to document any phase of the chain of custody could potentially compromise
the authenticity and integrity of the evidence, rendering it useless in court. The person
writing the report should also describe how the device was isolated from the cellular and
data networks.

Device acquisition
The entire acquisition process should be described in detail, starting with the names of
the tools that were used for the purpose. This data can also be reported in a table and
should include the name of the software, the manufacturer, the exact version number,
and the task that the tool was used for. If an invasive technique was performed, such
as jailbreaking the device to obtain a full filesystem acquisition, the examiner must
document the reasons why such actions were necessary. Typically, jailbreaking a device or
performing an agent-based acquisition is necessary when specific data is required that is
not present in a logical acquisition. On such occasions, it's important that the examiner
provides a detailed technical explanation of any data changes that may have occurred
during the acquisition process.

266 Writing a Forensic Report and Building a Timeline

Analysis process
Typically, an examiner will use multiple tools during the examination process: one
tool is used to perform the acquisition, a different tool for the analysis, and additional
tools to manually parse through the data, such as SQLite viewers. The report should
distinctly outline these tools, specifying if and when a manual examination was
performed and the reasons why this was necessary. If multiple tools were used and
there were any discrepancies in the data, this should be included in the report. This is
extremely common, due to the fact that a single tool cannot possibly support every
third-party iOS application.

Evidence
The findings of an examination should be listed in detail in this section of the report.
Depending on the scope of the investigation, there may potentially be thousands of
artifacts; for this reason, the evidence should be arranged logically within the report and
broken into categories, such as phone log, browsing history, and WhatsApp messages, for
example. For each artifact, the source file and hash should be indicated.

Another way of describing the artifacts is through a timeline, which we'll look at in more
detail in the next section. Using a timeline, a list of events is represented in a particular
order – usually in chronological order – and this is a great technique to determine what
kind of activity occurred on a device at a certain time.

Some examiners like to add comments to this section to explain the data or draw
conclusions based on the evidence. Personally, I believe that no conclusions should be
written in this part of the report, as this section should simply describe the evidence in
an objective manner. The digital forensic examiner's job is to find facts and present the
evidence, and it is then up to the investigator, the defense, or the prosecutor to explain
how the evidence supports the investigation.

Comments and conclusions
The final section of the report will outline the key points of the examination. Here,
the examiner can point out any observations, describing the results of the tests and
examinations. The relevance of the data should be explained by correlating different
sources. For example, merely stating in the report that a message was sent from the device
is not enough; the artifacts from the messaging application should be correlated to the
data regarding the device's date and time, time zone, pattern-of-life data, and application
usage logs. It is good practice to describe how the examiner validated their findings and
what measures were put in practice to guarantee the repeatability and reproducibility of
the forensic process.

Creating reports using Cellebrite Physical Analyzer 267

Appendices
At the end of the report, it may be useful to include any kind of reference material for the
reader, such as a list of common forensics terms and acronyms and their descriptions.
Copies of any automated, tool-generated reports should also be included.

While a report can be much longer depending on the complexity of the case, these
points should be sufficient to give you a general feel of a typical forensic report.

In the next section, we'll learn how to automatically generate reports using
forensic software.

Creating reports using Cellebrite
Physical Analyzer
Many forensic tools can automatically generate reports from artifacts and notes that the
examiner made when working on a case. Typically, the report can be exported in a variety
of formats, such as a Microsoft Word document, PDF, or HTML page. Although these
built-in features are huge time-savers, it's up to the examiner to explain the significance of
that evidence and understand the limitations of automatically generated reports.

In this section, we'll learn how to create reports using one of the most popular forensic
tools, Cellebrite Physical Analyzer.

There are two types of reports in Cellebrite Physical Analyzer:

• Preliminary device reports, which are brief documents that only include basic
device information and user account information

• Complete reports, which can be customized to include or exclude any kind of
artifact that was parsed by the tool

Let's start by generating a preliminary report.

Generating a preliminary device report
A preliminary device report can be used by the investigation team to quickly identify a
device based on some basic data that is extracted once the acquisition has been loaded
into Cellebrite Physical Analyzer.

There are two ways to choose from to generate this report:

• From the tool's main menu, choose Reports | Generate preliminary device report.

• From Extraction Summary, click on Generate preliminary device report.

268 Writing a Forensic Report and Building a Timeline

The following screenshot shows where the button is located:

Figure 12.2 – A preliminary device report generated from Extraction Summary

The report will be created in PDF format and stored at the default reporting path location.
The default path is C:\Users\<user>\Documents\My Reports\.

In the following screenshot, you can see an example of what this type of report looks like:

Creating reports using Cellebrite Physical Analyzer 269

Figure 12.3 – An example of a preliminary device report

270 Writing a Forensic Report and Building a Timeline

The report includes data that identifies the device, such as the model, iOS version, serial
number, ICCID, IMEI, and phone number, and details that relate to the device's owner,
such as the Apple ID that was signed into the device or the user accounts that were found
in the extraction.

In the following section, we'll learn how to create a complete report.

Generating a complete report
The first step in the process of creating a report in Cellebrite Physical Analyzer is deciding
which artifacts should be included in the report. An examiner will typically include all
of the data but, on some occasions, especially if the investigation is focused only on a
few artifacts, including every piece of data would make the report too long and the most
important details may be missed.

For every single record of every artifact, the examiner can choose to include it or exclude
it from the report by ticking the checkbox that is highlighted in the following screenshot:

Figure 12.4 – An artifact will be included in the report if the checkbox is enabled

Creating reports using Cellebrite Physical Analyzer 271

Keep in mind that, by default, all artifacts are included in the report when the tool loads
an extraction. If you want to change this setting and exclude all artifacts by default, go to
Tools | Settings | General settings and disable Check all entities by default.

Once the examiner has determined what artifacts should be included, follow these steps to
create the report:

1. From the menu, choose Report | Generate report. The Generate Report window
will appear, as you can see from the following screenshot:

Figure 12.5 – The Generate Report window

2. Enter the relevant information, such as the output directory, format, and examiner
name. Then, click Next to proceed. The Report Dataset window appears.

272 Writing a Forensic Report and Building a Timeline

3. In this window, the examiner can choose to only include artifacts generated in
between a specified timeframe. In the Data types section, individual categories can
be included or excluded from the report. In this example, we're only interested in
application usage logs and log entries, so we enable the relevant checkboxes:

Figure 12.6 – The Report Dataset window

Creating reports using Cellebrite Physical Analyzer 273

4. Additional settings can be fine-tuned in the Preferences panel, such as including
hashes for each source, translating artifacts, and enriching the results with external
data, for example. Click Next to continue.

Figure 12.7 – The Preferences tab

5. The Security Settings window appears. From here, you can enable an additional
layer of protection, such as setting a password for the report. Click Next.

6. From the Report Format window, the examiner can customize the report by setting
a logo, choosing the font, and setting the general look and feel. Once everything is
set, click Finish to generate the report.

7. When the report is successfully generated, it will be stored at the default reporting
path location.

274 Writing a Forensic Report and Building a Timeline

The following screenshots show what a complete report looks like. The first page of the
report contains the Summary and Source Extraction sections, which describe what tool
was used, the name of the examiner, and the name of the device:

Figure 12.8 – The Extraction Report Summary

The following pages describe the artifacts:

Creating reports using Cellebrite Physical Analyzer 275

Figure 12.9 – The Extraction Report Evidence list

276 Writing a Forensic Report and Building a Timeline

As you can see from the previous screenshot, for each artifact, Cellebrite Physical
Analyzer will output the name of the artifact, the description, the timestamp, and the
source file. Having the source file for each record is particularly useful, as it allows the
reader to easily understand where a particular artifact was located.

In the final part of this chapter, we'll learn all about timelines and why they're useful.

Introducing timelines
Timeline analysis is used extensively in forensic investigations that mainly involve
collecting and analyzing large volumes of data within a particular timeframe. This is a
great technique to determine what activity occurred on a system at a certain time and
allows examiners to make inferences easily.

A timeline is essentially a list of events displayed in a particular order, usually
chronologically. Timelines can be displayed as lists, tables, charts, or graphs.

By analyzing the timeline, a forensic analyst can easily find out when a particular event or
incident happened. Timelining also helps figure out any other event that took place during
the same time interval, and how these events are interconnected to one another.

Most forensic tools provide the examiner with the option of automatically generating a
timeline of events that occurred during a specific timeframe. The timeline's data can then
be exported as a CSV document and used to generate charts and graphs.

In the following section, we will learn how to generate and export a timeline using
Magnet AXIOM.

Building a timeline with Magnet AXIOM 277

Building a timeline with Magnet AXIOM
The Timeline Explorer within Magnet AXIOM gives the examiner a clear view of what's
happening on a device at a certain point in time.

At the top of the view, an interactive graph visually displays time, allowing the examiner to
identify spikes in device activity, focus on a specific time frame, and establish behavioral
patterns. At the bottom of the screen, a table will list all the timestamped artifacts in
chronological order.

The following screenshot shows what a timeline looks like:

Figure 12.10 – A timeline displayed in Magnet AXIOM

278 Writing a Forensic Report and Building a Timeline

Before a timeline can be viewed, the tool will need to complete an indexing process that,
in turn, generates the timeline. If default options are enabled, Magnet AXIOM will not
automatically build the timeline, so the examiner will need to manually start the process
by following these steps:

1. From the AXIOM Examine main menu, choose Tools | Build timeline.

Figure 12.11 – Building a timeline in Magnet AXIOM

2. Wait for the analysis and indexing process to complete. This could take some time,
depending on the size of the extraction.

3. Once the timeline has been built, the tool will automatically update the Timeline
Explorer view if new data is added to the case. To zoom in on the timeline, from the
top area of the screen, select a date or date range of evidence that you'd like to view
and click OK.

4. You can interact with the timeline by going back or forward in time. To do so,
click on the graph and drag your mouse left or right. To help decrease the scope
of evidence to be searched, the examiner can apply filters to the data, including
timeline categories, dates, and time ranges.

Building a timeline with Magnet AXIOM 279

Once the timeline has been built, the examiner can share the data by exporting it to a CSV
file. To do so, follow these steps:

1. In Timeline Explorer, select the artifacts that should be exported and right-click on
them. Click on Create export / report.

2. Click Browse, and select the location in which you want to save the exported data:

Figure 12.12 – Exporting the timeline to a CSV file

3. Click Create to generate the CSV file.
4. Once the CSV file has been generated, the data can be imported into a tool, such as

Apple Numbers or Microsoft Excel, to generate charts and graphs.

280 Writing a Forensic Report and Building a Timeline

The following figure shows an example of a timeline created with Microsoft Excel based
on the data from the CSV file:

Figure 12.13 – A timeline created in Microsoft Excel

Visualizing the data through a timeline during the examination process provides the
investigator with an opportunity to discover patterns or links that were missed when the
evidence was looked at previously, in a somewhat isolated manner.

Summary
In this chapter, we introduced the topic of reporting and learned about the best practices
for creating a mobile forensic report. First, we discussed how a report should be
structured and what questions should be answered. We divided the report into different
sections and dissected each of them separately. Then, we learned how an examiner can
benefit from using forensic tools to automatically generate reports based on the data being
examined. We focused on one tool, Cellebrite Physical Analyzer, and learned how to
generate a preliminary report and a complete report with this tool.

In the final part of the chapter, we introduced timeline analysis and learned how an
examiner can spot connections between different events by visualizing them in a timeline.
We learned how to generate a timeline with Magnet AXIOM, how to interact with it, and
how to export the data into a CSV file.

I hope that by reading this book, you have gained the knowledge that will help you acquire
and analyze any kind of artifact from iOS devices. Congratulations on getting this far!
Remember that practice and training will make you better at your job and will help you to
perfect the art of mobile forensics. Digital forensics is constantly evolving; becoming an
expert in this field requires an individual to constantly adapt to the changing environment
to seek new ways to solve problems.

Index

A
acquisition methods

about 28
deciding 42, 43
filesystem acquisition 32, 33
logical acquisition 28-32
physical acquisitions 32

acquisition methods, filesystem
acquisition

agent-based acquisitions 36
Checkm8 acquisitions 35, 36
Checkm8 vulnerability 33
checkra1n 35
iOS boot process 33-35

active pages 95
address book

analyzing 164, 165
Advanced Encryption Standard (AES) 13
advanced iOS location artifacts

about 153
GeoFences 153
motion data 153
multimedia files 153
third-party apps 153

After First Unlock (AFU) 15, 165, 236
AFU states

versus BFU states 237
agent-based acquisitions 36, 116
agent-based full filesystem

acquisition 55-57
Airmail 180
altitude 136
Android 220
API calls 222
App Genie

about 69
using 70-73

Apple File Connection (AFC) protocol 28
Apple File System (APFS) 8
Apple Mail application 180
Apple Numbers 279
Apple Pattern of Life Lazy

Output'er (APOLLO)
about 83, 130-133, 155
download link 83, 156
location data, analyzing with 155-157

application GUIDs
tracking 214-216

282 Index

application identifier 212
Assisted GPS (A-GPS)

about 137
sources 138

authentication credentials 252
automated scripts 174
AXIOM Examine

about 73
used, for analyzing Magnet

AXIOM evidence 80-82
AXIOM Process 73

B
balanced tree (B-tree) 95
Before First Unlock (BFU) 15, 186
Belkasoft X 256
BFU acquisition

about 237
of locked devices 239, 240
performing, with Cellebrite

UFED 242, 243
performing, with Elcomsoft iOS

Forensic Toolkit 240, 241
BFU states

about 83
versus AFU states 236

Binary Large Object (BLOB) data type 91
Binary-PLIST (BPLIST) 108, 173
Bluetooth 142
Bluetooth forensics 170-172
BootROM 33
brute-forcing 246
bundle container 8
Bundle ID 212

C
call log

analyzing 165, 166
case wizard 64
cda

using, to locate application’s
containers 219, 220

Cellebrite Advanced Services 237
Cellebrite Physical Analyzer

about 62, 88, 242
App Genie, using 69-73
decoded data, viewing 68, 69
evidence, loading 64-67
selective decoding 64-67
working with 63

Cellebrite Universal Forensic Extraction
Device (Cellebrite UFED)

about 6, 63, 240
logical acquisition with 44-48
used, for performing BFU

acquisition 242, 243
using, for Checkm8 full filesystem

acquisition 51-55
Cell ID 151
cells 95
cell towers 140
cellular forensics

about 160
ICCID 161
IMEI 162
IMSI 162
Mobile Country Code (MCC) 162
Mobile Network Code (MNC) 162
phone number 162

Certificate Authority (CA) 222
Certificate Pinning 224
chain of custody 20

Index 283

checkm8 5, 33, 239
checkm8 acquisitions 35, 36
checkm8 exploit 116
checkm8 full filesystem acquisition

with Cellebrite UFED 51-55
checkpoint 99
checkra1n

about 5, 35
jailbreaking with 37-40

Chrome 172
cloud applications 185
Cloud forensics 82
columns 90-92
complete report

generating 270-276
containers 210
cryptographic keys

used, for iOS Data Protection 14

D
data

analyzing, with iLEAPP 84, 85
data acquisition

about 20
method, selecting 21, 22

data acquisition, methods
filesystem extraction 21
logical extraction 21
physical extraction 21

database
analyzing, with hex viewer 101-104

data carving 105
data connections 160
data container 8
data integrity 42
data protection 12, 236
DB Browser 131

DB Browser for SQLite
about 92
download link 92

deleted data
recovering 101

deleted messages
detecting, with Mirf 191-193
recovering 190

deleted records
recovering, with FQLite 106, 107

device
jailbreaking 37
lockdown pairing records,

using to access 237-239
Device Firmware Upgrade (DFU) 34
device usage 116
DFU mode 239
dictionary attack 246
Digital Forensics and Incident

Response (DFIR) 83, 129
Dropbox

artifacts 230
Dynamic App Finder (DAP) 76

E
Elcomsoft iOS Forensic Toolkit

about 6, 238
logical acquisition with 48-50
used, for performing BFU

acquisition 240, 241
Elcomsoft Phone Breaker 247
Elcomsoft Phone Viewer 245
Electronic Mail (EML) 180
email

content, analyzing 184, 185
forensics 180
metadata, extracting 181-184

284 Index

encryption key 236, 252
end-to-end encryption 249
evidence tagging 73
examiner 88
Exchangeable Image File

Format (EXIF) 203
EXIF metadata

about 198-205
viewing 205

exiftool
URL 205

F
Facebook

artifacts 225
Facebook Messenger

artifacts 228
filesystem acquisition

about 32, 33
performing 51

filesystem events
monitoring, with fsmon 220-222

filesystem extraction 21
Finder 243
Firefox 172
forensic tools

about 62, 177
validating 62, 63

FQLite
deleted records, recovering 106, 107
download link 106

frames 100
free blocks 95
free-list 95
free pages 95
Frequent Locations 146
Frida 224

fsmon
using, to monitor filesystem

events 220-222
full filesystem acquisition 116

G
GeoFence 153
geographic location

coordinates 136
global unique identifier (GUID) 9
Gmail

about 180
artifacts 231

Google Earth 156
Google Maps 156
Graphical User Interface (GUI) 92
Grayshift’s GrayKey 237
group container 8
GSM 163

H
harvested cell tower data

analyzing 151, 152
Harvested Locations

about 150
versus routined locations 150

harvested Wi-Fi data
analyzing 152

hexdump command-line utility 94
hex viewer

about 94
database, analyzing 101-104

horizontal accuracy 136
HTTPS proxy 222

Index 285

I
iBoot 33
ICCID 161
iCloud

forensics 249
iCloud backups

about 237, 249, 250
extracting 256, 257

iCloud data
accessing 252, 253
credentials 252, 253

iCloud Keychain
about 253, 254
extracting 255

iCloud synced data
about 250, 251
extracting 255

image 196
iMessage artifact

analyzing 186-189
iMessages 192
Instagram

about 224
artifacts 226

Instant Messaging (IM) 185
Integrated Circuit Card Identifier

(ICCID) 161
International Mobile Equipment

Identity (IMEI) 161, 162
International Mobile Subscriber

Identity (IMSI) 161, 162
investigator 88
iOS 220
iOS 11 188

iOS applications
about 210, 211
GUIDs, tracking 214-216
installed applications,

identifying 212, 213
iOS artifacts

locating 111-113
working with 89

iOS boot process 33
iOS data decryption 15, 16
iOS data encryption 15, 16
iOS Data Protection

class keys 15
with cryptographic keys 14

iOS devices
acquisition method, deciding 42, 43
triaging 40-42

iOS filesystem
about 8
data storage location 8-10
file types 11
Property List Files (Plists) 10
SQLite databases 10

iOS filesystem, data storing
methods 10, 11

iOS forensics
revolution 5, 6

iOS forensic tools
Apple Pattern of Life Lazy

Output'er (APOLLO) 83
data, analyzing with iLEAPP 84, 85
iOS Logs, Events and Plists

Parser (iLEAPP) 83
iOS Triage 83
sysdiagnose 84
using 83

286 Index

iOS Logs, Events and Plists
Parser (iLEAPP)

about 83
download link 83
used, for analyzing data 84, 85

iOS operating system
dissecting 7

iOS security
about 11
data Protection 12
encryption 12
user authentication 11, 12

iOS security, encryption and
data Protection

Secure Enclave 12
iOS Triage

about 83
download link 83

iPhone 12 243
iPhone 13 243
iTunes backups

about 237, 243, 244
analyzing 245, 246
files, locating 244, 245
passwords, cracking 246-248

J
jailbreaking

device 37
with checkra1n 37-40

K
kernel 33
keyword searching 73
key wrapping 16

KnowledgeC.db database
about 121, 123
/app/inFocus 123
app/inFocus 123
application usage, analyzing 124-129
/app/webUsage 124
/device/batteryPercentage 123
/device/isLocked 123
/device/isPluggedIn 123
/displayIsBacklit 123
/display/orientation 124
events 121
logs 121
/media/nowPlaying 124
/notification/usage 124
user interaction 121
user interaction, analyzing 129, 130

L
latitude 136
LIMIT command 92
Linux 220
location artifacts

advanced iOS location artifacts 153
harvested cell tower data,

analyzing 151, 152
Harvested Locations 150
harvested Wi-Fi data, analyzing 152
locating 142
Significant Locations 146-148
Wi-Fi locations 148-150

location data
about 136
analyzing 143-145
analyzing, with Apollo 155-157
analyzing, with forensic tools 154
obtaining 136

Index 287

routined location data 145
SQLite databases 142
viewing, with Physical

Analyzer 154, 155
Location Services 136
Location Services iOS API 137
lockdown pairing records

about 237
using, to access device 237-239

locked devices
acquiring 236, 237
BFU acquisition of 239, 240

logical acquisition
about 28-32
performing 43
with Cellebrite UFED 44-48
with Elcomsoft iOS Forensic

Toolkit 48-50
logical extraction 21
log of Bluetooth-related events

connection 171
disconnection 171

longitude 136
Low-Level Bootloader (LLB) 33

M
MAC address 149
macOS 220
MAC timestamps 121
Magnet AXIOM

about 62, 88
evidence, analyzing with

AXIOM Examine 80-82
evidence, loading 73-79
timeline, building with 277-280
working with 73

malware 169

Man-in-the-middle (MITM) 222
Media Access Control (MAC)

addresses 170
media forensics 196-198
messaging applications

about 227
Facebook Messenger 228
Signal 228
Telegram 228
WhatsApp 227

messaging forensics
about 185
solutions 185

Microsoft Excel 279
Microsoft OneDrive

artifacts 230
Microsoft Teams

artifacts 229
Missing Record Finder for SQLite

Databases (Mirf)
about 192
deleted messages, detecting

with 191-193
mitmproxy

about 222
URL 222
using, to monitor network

activity 222, 223
mobile

forensic report, writing 263, 264
forensics, reporting 262

Mobile Country Code (MCC) 151, 162
MOBILedit Forensic Express 238
mobile, forensic report

abstract summary 265
analysis process 266
appendices 267
chain of custody 265

288 Index

comments 266
conclusions 266
cover, assigning 264
device acquisition 265
device identification 265
evidence 266
roles, assigning 264
title page, assigning 264

mobile forensics
about 4
iOS forensics 5, 6
iOS forensics, challenges 6, 7
workflow, establishing 17

mobile forensics examination
analysis 22, 23
data acquisition 20
preservation 19
reporting 25
seizure and identification 17, 18
timeline analysis 25
validation 23, 24

Mobile Network Code (MNC) 151, 162
motion data 153
multimedia applications

about 231
Netflix 231
Snapchat 232
Spotify 232
TikTok 232
YouTube 231

multimedia files 153

N
Netflix

artifacts 231
network activity

monitoring, with mitmproxy 222, 223

networking data
airplane mode 167
analyzing 167
known Wi-Fi networks 167, 169
Wi-Fi MAC address 167

network usage
about 167
analyzing 169, 170

NULL data type 91

O
Opera 172
Outlook 180

P
pages 94
paired devices 170
passcode cracking 239
pattern-of-life forensics

about 116
SQLite databases 117, 118

patterns of abnormal behavior 116
peer-based mechanism 138
photos

analyzing 198, 199
Photos.sqlite

about 199-203
physical acquisitions 32
Physical Analyzer

about 154
location data, viewing with 154, 155

plutil tool 108
PowerLog

analyzing 162, 163
preliminary device report

generating 267-270

Index 289

primary key 191
private browsing 177
private tabs 177
productivity applications

about 229
Dropbox 230
Gmail 231
Microsoft OneDrive 230
Microsoft Teams 229
Zoom 230

property list (PLIST)
about 91, 160
working with 108-110

protocol buffers (protbufs)
about 91
working with 110, 111

protoc tool
download link 111

proxy server 222
Python scripts 73

Q
query

about 91
example 91

R
Reading List 173
Received Signal Strength

Indicator (RSSI) 140
Reddit

artifacts 226
reports, with Cellebrite Physical Analyzer

complete report, generating 270-276
creating 267

preliminary device report,
generating 267-270

types 267
routined location data 145
ROWID 181
rows 90-92

S
Safari browsing history

analyzing 174-176
Safari forensics 172-174
Safari-related artifacts

cache 173
session cookies 173

satellite GPS 139, 140
Secure Enclave

about 12, 239
components 13, 14

Secure Enclave, components
Advanced Encryption

Standard (AES) 13
Secure Enclave Processor (SEP) 12
True Random Number

Generator (TRNG) 13
unique ID (UID) 13

Secure Enclave Processor (SEP) 12
semi-tethered jailbrea 40
Short Message Service (SMS) 185
Signal

artifacts 228
Significant Locations 146-148
six-digit passcode 239
SMS artifact

analyzing 186-189
SMS messages 192

290 Index

Snapchat
artifacts 232

social networking applications
about 225
Facebook 225
Instagram 226
Reddit 226, 227
Twitter 226

sophisticated heuristics 70
Spark 180
Spotify

artifacts 232
SQLite

about 90
database header reference 95
data types 90, 91
features 90
page header reference 96
URL 92

sqlite3 93
SQLite command-line tool

using 93
SQLite command-line utility 92
SQLite databases 117, 118
SQLite temporary files 98
SQL language 91
SQL queries

running 92
SSH connection 219
strings tool 105
sysdiagnose

about 84
download link 84

system on a chip (SoC) 12
system partition 8

T
tables 90-92
Telegram

about 185
artifacts 228

telephony services 160
test device

connecting to 218
third-party applications

analyzing 217, 218
analyzing, approaches 217
artifacts 225

third-party applications, artifacts
messaging applications 227
multimedia applications 231
productivity applications 229
social networking applications 225

third-party applications, dynamic analysis
advanced application analysis 224
cda, using to locate application’s

containers 219, 220
connecting, to test device 218
fsmon, using to monitor

filesystem events 220-222
mitmproxy, using to monitor

network activity 222, 223
third-party apps 153
third-party messaging apps

about 189, 190
Signal 190
Telegram 190
WhatsApp 189

TikTok
artifacts 232

Timeline Explorer 277

Index 291

timelines
about 276
building, with Magnet AXIOM 277-280

timestamps
working with 119

trilateration 140
True Random Number

Generator (TRNG) 13
Twitter

about 224
artifacts 226

two-factor authentication (2FA) 252

U
unallocated space 95
unc0ver 6
Unidentified Forensic Objects

(UFOs) 24, 63
unique ID (UID) 13
Universally Unique Identifier (UUID) 181
Unix epoch 121
Unix timestamps 119-121
user partition 8
user viewing activity

analyzing 205-208

V
vacuuming 96, 97
validation

best practices 24
significance 88, 89

videos
about 196
analyzing 198, 199

W
WAL file header 100
WAL frame header 100
WAN interface 169
WhatsApp

about 185
artifacts 227

Wi-Fi connections 167
Wi-Fi hotspots 148
Wi-Fi interface 169
Wi-Fi locations

analyzing 148-150
Wi-Fi networks 141
write-ahead logging 98
Write Ahead Log (WAL) 98, 191

Y
YouTube

artifacts 231

Z
Zoom

artifacts 230

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

294 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Practical Memory Forensics

Svetlana Ostrovskaya, Oleg Skulkin

ISBN: 9781801070331

• Understand the fundamental concepts of memory organization

• Discover how to perform a forensic investigation of random access memory

• Create full memory dumps as well as dumps of individual processes in Windows,
Linux, and macOS

• Analyze hibernation files, swap files, and crash dumps

• Apply various methods to analyze user activities

• Use multiple approaches to search for traces of malicious activity

• Reconstruct threat actor tactics and techniques using random access
memory analysis

https://www.packtpub.com/product/practical-memory-forensics/9781801070331

Other Books You May Enjoy 295

Learn Computer Forensics

William Oettinger

ISBN: 9781838648176

• Understand investigative processes, the rules of evidence, and ethical guidelines

• Recognize and document different types of computer hardware

• Understand the boot process covering BIOS, UEFI, and the boot sequence

• Validate forensic hardware and software

• Discover the locations of common Windows artifacts

• Document your findings using technically correct terminology

https://www.packtpub.com/product/learn-computer-forensics/9781838648176

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished iOS Forensics for Investigators, we'd love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the
site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1803234083
https://packt.link/r/1803234083

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1 –
Data Acquisition from iOS Devices
	Chapter 1: Introducing iOS Forensics
	Understanding mobile forensics
	The new golden age for iOS forensics
	Challenges in iOS forensics

	Dissecting the iOS operating system
	Understanding the iOS filesystem

	Understanding iOS security
	User authentication
	Encryption and Data Protection

	Establishing a workflow
	Seizure and identification
	Preservation
	Acquisition
	Analysis
	Validation
	Reporting

	Summary

	Chapter 2: Data Acquisition from iOS Devices
	Understanding acquisition methods
	Logical acquisitions
	Physical acquisitions
	Filesystem acquisitions

	Jailbreaking the device
	Jailbreaking with checkra1n

	Triaging the device
	Deciding the best acquisition method

	Performing a logical acquisition
	Logical acquisition with Cellebrite UFED
	Logical acquisition with Elcomsoft iOS Forensic Toolkit

	Performing a filesystem acquisition
	Checkm8 full filesystem acquisition using
Cellebrite UFED
	Agent-based full filesystem acquisition

	Summary

	Section 2 –
iOS Data Analysis
	Chapter 3: Using Forensic Tools
	Understanding forensic tools
	Tool validation

	Working with Cellebrite Physical Analyzer
	Loading evidence and selective decoding
	Viewing decoded data
	Using the AppGenie

	Working with Magnet AXIOM
	Loading evidence and on-the-fly processing
	Analyzing evidence with AXIOM Examine

	Using open source tools
	Apollo
	iLEAPP
	iOS Triage
	Sysdiagnose
	Analyzing data with iLEAPP

	Summary

	Chapter 4: Working with Common iOS Artifacts
	Understanding the importance of validation
	Working with iOS artifacts
	Introducing SQLite
	Tables, columns, and rows
	Running SQL queries
	Pages, vacuuming, and write-ahead logs
	Recovering deleted data
	Working with property lists
	Working with protocol buffers

	Locating common artifacts
	Summary

	Chapter 5: Pattern-of-Life Forensics
	Introducing pattern-of-life forensics
	Meaningful SQLite databases

	Working with timestamps
	Unix timestamps
	Mac timestamps

	Logs, events, and user interaction
	The KnowledgeC database
	Analyzing application usage
	Analyzing user interaction

	Introducing Apollo
	Summary

	Chapter 6: Dissecting Location Data
	Introducing location data
	GPS fixes, cell towers, and Wi-Fi networks
	Satellite GPS
	Cell towers
	Wi-Fi and Bluetooth

	Locating location artifacts
	Analyzing location data
	Understanding Significant Locations
	Analyzing Wi-Fi locations
	Understanding Harvested Locations
	Analyzing harvested cell tower data
	Analyzing harvested Wi-Fi data
	Advanced iOS location artifacts

	Analyzing location data using forensic tools
	Viewing location data with Physical Analyzer
	Analyzing location data with Apollo

	Summary

	Chapter 7: Analyzing Connectivity Data
	Introducing cellular forensics
	Analyzing the PowerLog
	Analyzing the address book
	Analyzing the call log

	Analyzing networking data
	Analyzing network usage

	Introducing Bluetooth forensics
	Understanding Safari forensics
	Analyzing Safari history
	Introducing private browsing

	Summary

	Chapter 8: Email and Messaging Forensics
	Introducing email forensics
	Extracting email metadata
	Analyzing email content

	Understanding messaging forensics
	Analyzing SMS and iMessage artifacts

	Introducing third-party messaging apps
	Recovering deleted messages
	Detecting deleted messages using Mirf

	Summary

	Chapter 9: Photo, Video, and Audio Forensics
	Introducing media forensics
	Analyzing photos and videos
	Understanding Photos.sqlite

	Introducing EXIF metadata
	Viewing EXIF metadata

	Analyzing user viewing activity
	Summary

	Chapter 10: Analyzing
Third-Party Apps
	Introducing iOS applications
	Identifying installed applications
	Tracking application GUIDs

	Dynamic application analysis
	Connecting to the test device
	Using cda to locate an application's containers
	Using fsmon to monitor filesystem events
	Using mitmproxy to monitor network activity
	Advanced application analysis

	Practical third-party applications forensics
	Social networking applications
	Messaging applications
	Productivity applications
	Multimedia applications

	Summary

	Chapter 11: Locked Devices, iTunes Backups, and iCloud Forensics
	Acquiring locked devices
	Using lockdown pairing records to access the device
	Passcode cracking

	BFU acquisition of locked devices
	Performing a BFU acquisition using the Elcomsoft iOS Forensic Toolkit
	Performing a BFU acquisition using the
Cellebrite UFED

	Introducing iTunes backups
	Locating backup files
	Analyzing iTunes backups
	Cracking iTunes backup passwords

	Introducing iCloud forensics
	iCloud backups
	iCloud synced data
	Accessing iCloud data
	Introducing iCloud Keychain
	Extracting iCloud Keychain and synced data
	Extracting iCloud backups

	Summary

	Section 3 –
Reporting
	Chapter 12: Writing a Forensic Report and Building a Timeline
	Mobile forensics reporting
	Writing a forensic report

	Creating reports using Cellebrite
Physical Analyzer
	Generating a preliminary device report
	Generating a complete report

	Introducing timelines
	Building a timeline with Magnet AXIOM
	Summary

	Index
	Other Books You May Enjoy

